Uni-Mol:分子3D表示学习框架和预训练模型项目原作解读

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: Uni-Mol:分子3D表示学习框架和预训练模型项目原作解读

预训练模型正在席卷 AI 领域。从大规模无标注数据中提取表征信息,再在小范围标注的下游任务上进行监督学习,正在成为很多领域的事实解决方案。NLP 中有 BERT、GPT-3,CV 中有 ViT,而这样的模式如何助力药物设计,也一直都是人们密切关注的问题。药物分子与图片、语言文字的不同之处在于,“什么是最好的分子表征”依旧是一个人们未能形成共识的问题。主流分子预训练模型均从一维序列或二维图结构出发,但分子结构本身是在三维空间中表示的。能否直接从三维信息出发构建预训练模型、获得更好的分子表征,是一个重要而有意义的问题。

近日,深势科技团队发布了首个三维分子预训练模型 Uni-Mol。Uni-Mol 直接将分子三维结构作为模型输入,而非采用一维序列或二维图结构,在利用 2 亿个分子三维构象和 3 百万个蛋白候选口袋数据进行预训练后,Uni-Mol 在几乎所有与药物分子和蛋白口袋相关的下游任务上都超越了 SOTA(state of the art),也让 Uni-Mol 得以能够直接完成分子构象生成、蛋白-配体结合构象预测等三维构象生成相关的任务,并超越现有解决方案。


相关文章
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
|
机器学习/深度学习 人工智能 算法
【ICLR 2018】模型集成的TRPO算法【附代码】
【ICLR 2018】模型集成的TRPO算法【附代码】
|
人工智能 并行计算 算法
|
机器学习/深度学习 数据采集 算法
【MATLAB第4期】源码分享#基于贝叶斯Bayes算法优化LSTM长短期记忆网络的时间序列预测模型,含源代码+中文注释,保姆级教学
【MATLAB第4期】源码分享#基于贝叶斯Bayes算法优化LSTM长短期记忆网络的时间序列预测模型,含源代码+中文注释,保姆级教学
|
机器学习/深度学习 人工智能
|
人工智能 自然语言处理
|
算法 文件存储 计算机视觉
最佳Backbone | RepVGG重镇VGG雄风,各大任务独占鳌头(附源码和论文下载)(一)
最佳Backbone | RepVGG重镇VGG雄风,各大任务独占鳌头(附源码和论文下载)(一)
118 0
|
编解码 并行计算 计算机视觉
最佳Backbone | RepVGG重镇VGG雄风,各大任务独占鳌头(附源码和论文下载)(二)
最佳Backbone | RepVGG重镇VGG雄风,各大任务独占鳌头(附源码和论文下载)(二)
105 0
|
机器学习/深度学习 固态存储 算法
【项目实践】从零开始学习SSD目标检测算法训练自己的数据集(附注释项目代码)(一)
【项目实践】从零开始学习SSD目标检测算法训练自己的数据集(附注释项目代码)(一)
535 0
|
编解码 固态存储 算法
【项目实践】从零开始学习SSD目标检测算法训练自己的数据集(附注释项目代码)(二)
【项目实践】从零开始学习SSD目标检测算法训练自己的数据集(附注释项目代码)(二)
312 0

热门文章

最新文章

下一篇
无影云桌面