【机器学习算法】5、支持向量机算法(一)

简介: 【机器学习算法】5、支持向量机算法(一)

简介


支持向量机(SVM)主要是用来解决数据分类的问题,而分类的目的则是构造一个分类函数或者分类模型,该模型能把数据库中的数据项映射到给定类别的某一类,从而可以预测未知类别。


支持向量机可以分为线性支持向量机(也称为硬间隔支持向量机)、非线性支持向量机(也称软间隔支持向量机)。主要的应用领域是文本分类、图像分类、数据挖掘、手写字符识别、行人检测、人脸识别等领域。


算法的流程



函数间隔于几何间隔


   在超平面确定的情况下,|wx+b|可以表示点x到超平面距离的远近,而通过观察wx+b的符号于类标记y的符号是否一致可判断分类是否正确,所以,可以用决策函数的正负性来判定或表示分类的正确性。于是可以引出函数间隔的概念。函数间隔(用表示)的定义为:

超平面(w,b)关于T中的所有样本点(xi,yi)的函数间隔最小值(其中,x为特征,y是结果标签,表示第i个样本)便为超平面(w,b)关于训练数据集T的函数间隔:

   但是,这样定义函数间隔存在问题,如果w和b成比例增加或者减小函数间隔且不变,但是实际超平面的间隔在发生变化,于是便提出了具有约束的函数间隔也就是几何间隔:

   几何间隔也可以根据几何关系得到,这里不做过多说明。


算法具体步骤的推导


   对于一个数据点进行分类,超平面离数据点的“间隔”越大,分类的确信度也就越大,为了使分类器的确信度尽可能地高,需要将所选择地超平面能够最大化这个“间隔”值。由前面的分析可以知道,函数间隔不适合用来做最大化间隔值,因此使用的使几何间隔作为优化的间隔。


1、线性可分SVM

   由于要求超平面离两类样本地距离要尽可能大,根据点到平面的距离公式,每个样本点到超平面的距离为:

   其中||w||为向量的L2范数,在这里超平面与样本之间是存在冗余的,所以在这里利用这个特点简化求解问题,对w和b加上如下的约束:

可以消除这个冗余,同时简化点到超平面距离的计算公式。

于此可以写出两类样本到超平面的距离间隔为:

   目标是使得间隔最大化,这样的话上式的结果等价于最小化如下的目标函数:

于是间隔最大化问题可以对偶为最小化如下的问题:

   可见上式就是一个带不等式约束的最优化问题,可以构造拉格朗日函数进行求解,所构造的拉格朗日函数如下:

在此引入拉格朗日的对偶问题,即:

先对于L(w,b,α)求关于参数的导数,分别如下:

   由对偶后先求解min问题,即令w,b的偏导数为0,求出极值条件下的值:

将导数代入拉格朗日函数得到:

于是优化问题也变成了

因为wx+b=yi,代入w*的值,可以得到b为:

于是可以得出决策函数为

综上所述,线性可分支持向量机的算法步骤如下:

(1)给定数据集T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)},y={+1,-1};

(2)构造最优化问题:

   求解最优化的所有α

(3)计算参数w*和b

(4)得出超平面与决策函数


2、非线性SVM

   在线性不可分的情况下,支持向量机首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维空间,最终在高维特征空间中构造出最优分离超平面,从而把平面上本身不好分的非线性数据分开。


下面直接给出非线性支持向量机算法的步骤:

综上所述,线性可分支持向量机的算法步骤如下:

(1)给定数据集T={(x1,y1),(x2,y2),(x3,y3),...,(xN,yN)},y={+1,-1};

(2)构造最优化问题:

   求解最优化的所有α

(3)计算参数w*和b

(4)得出超平面与决策函数


3、常见的核函数

(1)线性核(Linear Kernel)

(2)多项式核(Polynomial Kernel)

(3)径向基核函数(Radial Basis Function)

也叫高斯核(Gaussian Kernel)

(4)幂指数核(Exponential Kernel)

(5)拉普拉斯核(Laplacian Kernel)

(6)ANOVA核(ANOVA Kernel)

(7)二次有理核(Rational Quadratic Kernel)

(8)多元二次核(Multiquadric Kernel)

(9)逆多元二次核(Inverse Multiquadric Kernel)

(10)Sigmoid核(Sigmoid Kernel)

   以上几种是比较常用的,大部分在SVM,SVM-light以及RankSVM中可用参数直接设置。还有其他一些不常用的,如小波核,贝叶斯核,可以需要通过代码自己指定。

相关文章
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
12天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
20天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
43 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
28天前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
25天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
29天前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
29天前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
29天前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
21天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
27 0