图像分类(迁移学习/五分钟手把手教你搭建分类模型)下

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 图像分类(迁移学习/五分钟手把手教你搭建分类模型)

正文


网络搭建


有的小伙伴会有疑惑,怎么先模型训练后网络搭建了,其实不是哈,上面只是训练的一个类,下面才是实例化。因为是迁移学习嘛,而且pytorch内置了许多网络供我们选择,因此,此处省去了许多网络搭建,也就是卷积层的搭建过程。此举,意在让我们更快实现分类的目的,而不是过多的重复已有的工作。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)


可以看到:

model_conv = torchvision.models.resnet18(pretrained=True)


此模型采用了resnet18网络,大家都知道这个残差网络具有很好的训练效果,而我们只是一行代码就使用了该网络,可见pytorh的方便之处。

odel_conv.fc = nn.Linear(num_ftrs, 2)


如果你要进行多类的分类任务,那么你除了在数据集进行变化之外,还需要将上面2这个数字改为 你分类的类别量

criterion = nn.CrossEntropyLoss()


并且这里运用了交叉熵损失函数进行费分类任务,可见损失函数也无需我们进行过多书写,也给我们内置好了函数。

上面说到了上面进行了数据集训练类的书写,下面实例化就完成了类的调用,

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)


为了训练精确,你需要更改 num_epochs=25这里的参数,以及增加你的数据集数量。在我的博客也将写道如何获取想要的数据集

到此就完成了对图像二分类任务的实现


本次图像分类任务的精确度较好,由以下看出:

Training complete in 1m 11s
Best val Acc: 0.921569

图像二分类任务精度达92%,就问你喜不喜欢。

下面的结果,也证实了准确率:


分类结果


f26a5ebb1afeef9aab3568905acd8a3a_ef51ef973cb64dfe85d2ae50ab7a773d.png


模型保存


模型保存就不再赘述啦,可以私信本人获取,单张图像预测的代码也可以找我!

你要的整体代码如下:

from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
cudnn.benchmark = True
plt.ion()   # interactive mode
######################################################################
# Load Data
# ---------
#
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}
data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
######################################################################
# Visualize a few images
# ^^^^^^^^^^^^^^^^^^^^^^
# Let's visualize a few training images so as to understand the data
# augmentations.
def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated
# Get a batch of training data
inputs, classes = next(iter)
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
######################################################################
# Training the model
# ------------------
#
# Now, let's write a general function to train a model. Here, we will
# illustrate:
#
# -  Scheduling the learning rate
# -  Saving the best model
#
# In the following, parameter ``scheduler`` is an LR scheduler object from
# ``torch.optim.lr_scheduler``.
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0
    for epoch in range(num_epochs):
        print(f'Epoch {epoch}/{num_epochs - 1}')
        print('-' * 10)
        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode
            running_loss = 0.0
            running_corrects = 0
            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)
                # zero the parameter gradients
                optimizer.zero_grad()
                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)
                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()
                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
            if phase == 'train':
                scheduler.step()
            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]
            print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
            # deep copy the model
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
        print()
    time_elapsed = time.time() - since
    print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
    print(f'Best val Acc: {best_acc:4f}')
    # load best model weights
    model.load_state_dict(best_model_wts)
    return model
######################################################################
# Visualizing the model predictions
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# Generic function to display predictions for a few images
#
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()
    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)
            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title(f'predicted: {class_names[preds[j]]}')
                imshow(inputs.cpu().data[j])
                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)
######################################################################
# Finetuning the convnet
# ----------------------
#
# Load a pretrained model and reset final fully connected layer.
#
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
# Here the size of each output sample is set to 2.
# Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
model_ft.fc = nn.Linear(num_ftrs, 2)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
######################################################################
# Train and evaluate
# ^^^^^^^^^^^^^^^^^^
#
# It should take around 15-25 min on CPU. On GPU though, it takes less than a
# minute.
#
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)
######################################################################
#
visualize_model(model_ft)
######################################################################
# ConvNet as fixed feature extractor
# ----------------------------------
#
# Here, we need to freeze all the network except the final layer. We need
# to set ``requires_grad = False`` to freeze the parameters so that the
# gradients are not computed in ``backward()``.
#
# You can read more about this in the documentation
# `here <https://pytorch.org/docs/notes/autograd.html#excluding-subgraphs-from-backward>`__.
#
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
######################################################################
# Train and evaluate
# ^^^^^^^^^^^^^^^^^^
#
# On CPU this will take about half the time compared to previous scenario.
# This is expected as gradients don't need to be computed for most of the
# network. However, forward does need to be computed.
#
model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)
######################################################################
#
visualize_model(model_conv)
plt.ioff()
plt.show()

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
3月前
|
数据处理 算法框架/工具 计算机视觉
手把手教你使用YOLOV5训练自己的目标检测模型
本教程由肆十二(dejahu)撰写,详细介绍了如何使用YOLOV5训练口罩检测模型,涵盖环境配置、数据标注、模型训练、评估与使用等环节,适合大作业及毕业设计参考。提供B站视频、CSDN博客及代码资源链接,便于学习实践。
492 1
手把手教你使用YOLOV5训练自己的目标检测模型
|
5月前
|
API 异构计算
4.3.2 图像分类ResNet实战:眼疾识别——模型构建
这篇文章介绍了如何使用飞桨框架中的ResNet50模型进行眼疾识别的实战,通过5个epoch的训练,在验证集上达到了约96%的准确率,并提供了模型构建、训练、评估和预测的详细代码实现。
|
7月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
|
7月前
|
机器学习/深度学习 数据可视化 TensorFlow
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存
|
机器学习/深度学习 人工智能 数据可视化
【Pytorch神经网络实战案例】20 基于Cora数据集实现图卷积神经网络论文分类
CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的论文类别。
696 0
|
8月前
|
机器学习/深度学习 数据采集 PyTorch
PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)
PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)
399 1
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)
PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)
373 1
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch搭建卷积神经网络(CNN)进行视频行为识别(附源码和数据集)
PyTorch搭建卷积神经网络(CNN)进行视频行为识别(附源码和数据集)
188 0
|
8月前
|
机器学习/深度学习 数据采集 自然语言处理
PyTorch搭建LSTM神经网络实现文本情感分析实战(附源码和数据集)
PyTorch搭建LSTM神经网络实现文本情感分析实战(附源码和数据集)
878 0
|
机器学习/深度学习 存储 数据采集
图像分类基础(一)
图像分类基础(一)
242 0

热门文章

最新文章