【Pytorch神经网络实战案例】20 基于Cora数据集实现图卷积神经网络论文分类

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的论文类别。

815902569f6a467a99304f9ac1482386.png


1 案例说明(图卷积神经网络)


CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的论文类别。


aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X3BuZy84Vk9pYWNrNGYyOWN4YXJ3UWJjclVtRGg3RGlhaWF3YlhYbURYOG1EZnRpYWxQZURzWHdxekhZYWNpY0J6T2RSWUZjZ1ZpYmVaY3BKWjM2THV2eFZ5d3dHM2dLdy82NDA.png


1.1 使用图卷积神经网络的特点


使用图神经网络来实现分类。与深度学习模型的不同之处在于,图神经网通会利用途文本身特征和论文间的关系特征进行处理,仅需要少量样本即可达到很好的效果。

cora数据集2022年-深度学习文档类资源-CSDN下载

CORA数据集是由机器学习的论文整理而来的,记录每篇论文用到的关键词,以及论文之间互相引用的关系。C更多下载资源、学习资料请访问CSDN下载频道.

https://download.csdn.net/download/qq_39237205/85059035


1.2 CORA数据集


CORA数据集是由机器学习的论文整理而来的,记录每篇论文用到的关键词,以及论文之间互相引用的关系。


1.2.1 CORA的内容


CORA数据集中的论文共分为7类:基于案例、遗传算法、神经网络、概率方法、强化学习、规则学习、理论。


1.2.2 CORA的组成


数据集中共有2708篇论文,每一篇论文都引用或至少被一篇其他论文所引用。整个语料库共有2708篇论文。同时,又将所有论文中的词干、停止词、低频词删除,留下1433个关键词,作为论文的个体特征。


ad25f81a267e4c42a255f0e8e6bedbcd.png


1.2.3 CORA数据集的文件与结构说明


(1)content文件格式的论文说明:


<paper-id><word-attributes><class-label>


每行的第一个条目包含论文的唯一字符串ID,随后用一个二进制值指示词汇表中的每个单词在纸张中存在(由1表示)或不存在(由0表示)。行中的最后一项包含纸张的类标签。


(2)cites文件包含了语料库的引文图,每一行用以下格式描述一个链接:


<id ofreferencepaper><id ofreference paper>

每行包含两个纸张ID。第一个条目是被引用论文的ID,第二个ID代表包含引用的论文。链接的方向是从右向左的。如果一行用“paper2 paper1”表示,那么其中连接为“paper2->paper1”


2 代码编写


2.1 代码实战:引入基础模块,设置运行环境----Cora_GNN.py(第1部分)


from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda
# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda


输出结果:


24b0ca48842347efab6e8091376e00a0.png


2.2 代码实现:读取并解析论文数据----Cora_GNN.py(第2部分)


# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状
# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}
# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状
# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])


输出:


a400e4d9323d474089f1a3552637f8a3.png


2.3 读取并解析论文关系数据


载入论文的关系数据,将数据中用论文ID表示的关系转化成重新编号后的关系,将每篇论文当作一个顶点,论文间的引用关系作为边,这样论文的关系数据就可以用一个图结构来表示。


b539f7004ac743998d9c96cd1e545adc.png


计算该图结构的邻接矩阵并将其转化为无向图邻接矩阵。


2.3.1 代码实现:转化矩阵----Cora_GNN.py(第3部分)


# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T


输出:


90d435af4d024da2bd67fe4695a55af6.png


2.4 加工图结构的矩阵数据


对图结构的矩阵数据进行加工,使其更好地表现出图结构特征,并参与神经网络的模型计算。


2.4.1 加工图结构的矩阵数据的步骤


1、对每个节点的特征数据进行归一化处理。


2、为邻接矩阵的对角线补1:因为在分类任务中,邻接矩阵主要作用是通过论文间的关联来帮助节点分类。对于对角线上的节点,表示的意义是自己与自己的关联。将对角线节点设为1(自环图)、表明节点也会帮助到分类任务。


3、对补1后的邻接矩阵进行归一化处理。


932919cc9ea546f8a0f4e363c671c110.png


2.4.2 代码实现:加工图结构的矩阵数据----Cora_GNN.py(第4部分)


# 1.4 加工图结构的矩阵数据
def normalize(mx): # 定义函数,对矩阵的数据进行归一化处理
    rowsum = np.array(mx.sum(1)) # 计算每一篇论文的字数==>02 对A中的边数求和,计算出矩阵A的度矩阵D^的特征向量
    r_inv = (rowsum ** -1).flatten() # 取总字数的倒数==>03 对矩阵A的度矩阵D^的特征向量求逆,并得到D^逆的特征向量
    r_inv[np.isinf(r_inv)] = 0.0 # 将NaN值取为0
    r_mat_inv = diags(r_inv) # 将总字数的倒数变为对角矩阵===》对图结构的度矩阵求逆==>04 D^逆的特征向量转化为对角矩阵,得到D^逆
    mx = r_mat_inv.dot(mx) # 左乘一个矩阵,相当于每个元素除以总数===》对每个论文顶点的边进行归一化处理==>05 计算D^逆与A加入自环(对角线为1)的邻接矩阵所得A^的点积,得到拉普拉斯矩阵。
    return mx
# 对features矩阵进行归一化处理(每行总和为1)
features = normalize(features) #在函数normalize()中,分为两步对邻接矩阵进行处理。1、将每篇论文总字数的倒数变成对角矩阵。该操作相当于对图结构的度矩阵求逆。2、用度矩阵的逆左乘邻接矩阵,相当于对图中每个论文顶点的边进行归一化处理。
# 对邻接矩阵的对角线添1,将其变为自循环图,同时对其进行归一化处理
adj = normalize(adj + eye(adj.shape[0])) # 对角线补1==>01实现加入自环的邻接矩阵A


2.5 将数据转化为张量,并分配运算资源


将加工好的图结构矩阵数据转为PyTorch支持的张量类型,并将其分成3份,分别用来进行训练、测试和验证。


2.5.1 代码实现:将数据转化为张量,并分配运算资源----Cora_GNN.py(第5部分)


# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签
# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序
# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引
# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)


2.6 图卷积


图卷积的本质是维度变换,即将每个含有in维的节点特征数据变换成含有out维的节点特征数据。


图卷积的操作将输入的节点特征、权重参数、加工后的邻接矩阵三者放在一起执行点积运算。


权重参数是个in×out大小的矩阵,其中in代表输入节点的特征维度、out代表最终要输出的特征维度。将权重参数在维度变换中的功能当作一个全连接网络的权重来理解,只不过在图卷积中,它会比全连接网络多了执行节点关系信息的点积运算。


40bb186644e6483bb9dc9e6c1da4cd31.png


如上图所示,列出全连接网络和图卷积网络在忽略偏置后的关系。从中可以很清晰地看出,图卷积网络其实就是在全连接网络基础之上增加了节点关系信息。


2.6.1 代码实现:定义Mish激活函数与图卷积操作类----Cora_GNN.py(第6部分)


在上图的所示的算法基础增加偏置,定义GraphConvolution类


# 1.6 定义Mish激活函数与图卷积操作类
def mish(x): # 性能优于RElu函数
    return x * (torch.tanh(F.softplus(x)))
# 图卷积类
class GraphConvolution(nn.Module):
    def __init__(self,f_in,f_out,use_bias = True,activation=mish):
        # super(GraphConvolution, self).__init__()
        super().__init__()
        self.f_in = f_in
        self.f_out = f_out
        self.use_bias = use_bias
        self.activation = activation
        self.weight = nn.Parameter(torch.FloatTensor(f_in, f_out))
        self.bias = nn.Parameter(torch.FloatTensor(f_out)) if use_bias else None
        self.initialize_weights()
    def initialize_weights(self):# 对参数进行初始化
        if self.activation is None: # 初始化权重
            nn.init.xavier_uniform_(self.weight)
        else:
            nn.init.kaiming_uniform_(self.weight, nonlinearity='leaky_relu')
        if self.use_bias:
            nn.init.zeros_(self.bias)
    def forward(self,input,adj): # 实现模型的正向处理流程
        support = torch.mm(input,self.weight) # 节点特征与权重点积:torch.mm()实现矩阵的相乘,仅支持二位矩阵。若是多维矩则使用torch.matmul()
        output = torch.mm(adj,support) # 将加工后的邻接矩阵放入点积运算
        if self.use_bias:
            output.add_(self.bias) # 加入偏置
        if self.activation is not None:
            output = self.activation(output) # 激活函数处理
        return output


2.7 搭建多层图卷积


定义GCN类将GraphConvolution类完成的图卷积层叠加起来,形成多层图卷积网络。同时,为该网络模型实现训练和评估函数。


2.7.1 代码实现:多层图卷积----Cora_GNN.py(第7部分)


# 1.7 搭建多层图卷积网络模型
class GCN(nn.Module):
    def __init__(self, f_in, n_classes, hidden=[16], dropout_p=0.5): # 实现多层图卷积网络,该网的搭建方法与全连接网络的搭建一致,只是将全连接层转化成GraphConvolution所实现的图卷积层
        # super(GCN, self).__init__()
        super().__init__()
        layers = []
        # 根据参数构建多层网络
        for f_in, f_out in zip([f_in] + hidden[:-1], hidden):
            # python 在list上的“+=”的重载函数是extend()函数,而不是+
            # layers = [GraphConvolution(f_in, f_out)] + layers
            layers += [GraphConvolution(f_in, f_out)]
        self.layers = nn.Sequential(*layers)
        self.dropout_p = dropout_p
        # 构建输出层
        self.out_layer = GraphConvolution(f_out, n_classes, activation=None)
    def forward(self, x, adj): # 实现前向处理过程
        for layer in self.layers:
            x = layer(x,adj)
        # 函数方式调用dropout():必须指定模型的运行状态,即Training标志,这样可减少很多麻烦
        F.dropout(x,self.dropout_p,training=self.training,inplace=True)
        return self.out_layer(x,adj)
n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433
def accuracy(output,y): # 定义函数计算准确率
    return (output.argmax(1) == y).type(torch.float32).mean().item()
### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
def step(): # 定义函数来训练模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.train()
    optimizer.zero_grad()
    output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失
    loss = F.cross_entropy(output[idx_train],labels[idx_train])
    acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率
    loss.backward()
    optimizer.step()
    return loss.item(),acc
def evaluate(idx): # 定义函数来评估模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.eval()
    output = model(features, adj) # 将全部数据载入模型,用指定索引评估模型结果
    loss = F.cross_entropy(output[idx], labels[idx]).item()
    return loss, accuracy(output[idx], labels[idx])


2.8 Ranger优化器


图卷积神经网络的层数不宜过多,一般在3层左右即可。本例将实现一个3层的图卷积神经网络,每层的维度变化如图9-15所示。


67895c9d0c2e418aa6d871d358e1939d.png


使用循环语句训练模型,并将模型结果可视化。


2.8.1 代码实现:用Ranger优化器训练模型并可视化结果----Cora_GNN.py(第8部分)


# 1.8 使用Ranger优化器训练模型并可视化
model = GCN(n_features, n_labels, hidden=[16, 32, 16]).to(device)
from tqdm import tqdm
from Cora_ranger import * # 引入Ranger优化器
optimizer = Ranger(model.parameters()) # 使用Ranger优化器
# 训练模型
epochs = 1000
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):
    tl,ta = step()
    train_loss = train_loss + [tl]
    train_acc = train_acc + [ta]
    if (i+1) % print_steps == 0 or i == 0:
        tl,ta = evaluate(idx_train)
        vl,va = evaluate(idx_val)
        val_loss = val_loss + [vl]
        val_acc = val_acc + [va]
        print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')
# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')
# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)
# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)


2.7 程序输出汇总


2.7.1 训练过程


1399e65ad3f54bec917f5b7415c0a9ff.png


2.7.3 验证结果


99775f277265497f8f27d85aef8e9ef2.png


2.8 结论


从训练结果中可以看出,该模型具有很好的拟合能力。值得一提的是,图卷积模型所使用的训练样本非常少,只使用了2708个样本中的200个进行训练。因为加入了样本间的关系信息,所以模型对样本量的依赖大幅下降。这也正是图神经网络模型的优势。


3 代码汇总


3.1 Cora_GNN.py


from pathlib import Path # 引入提升路径的兼容性
# 引入矩阵运算的相关库
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix,csr_matrix,diags,eye
# 引入深度学习框架库
import torch
from torch import nn
import torch.nn.functional as F
# 引入绘图库
import matplotlib.pyplot as plt
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 1.1 导入基础模块,并设置运行环境
# 输出计算资源情况
device = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu')
print(device) # 输出 cuda
# 输出样本路径
path = Path('./data/cora')
print(path) # 输出 cuda
# 1.2 读取并解析论文数据
# 读取论文内容数据,将其转化为数据
paper_features_label = np.genfromtxt(path/'cora.content',dtype=np.str_) # 使用Path对象的路径构造,实例化的内容为cora.content。path/'cora.content'表示路径为'data/cora/cora.content'的字符串
print(paper_features_label,np.shape(paper_features_label)) # 打印数据集内容与数据的形状
# 取出数据集中的第一列:论文ID
papers = paper_features_label[:,0].astype(np.int32)
print("论文ID序列:",papers) # 输出所有论文ID
# 论文重新编号,并将其映射到论文ID中,实现论文的统一管理
paper2idx = {k:v for v,k in enumerate(papers)}
# 将数据中间部分的字标签取出,转化成矩阵
features = csr_matrix(paper_features_label[:,1:-1],dtype=np.float32)
print("字标签矩阵的形状:",np.shape(features)) # 字标签矩阵的形状
# 将数据的最后一项的文章分类属性取出,转化为分类的索引
labels = paper_features_label[:,-1]
lbl2idx = { k:v for v,k in enumerate(sorted(np.unique(labels)))}
labels = [lbl2idx[e] for e in labels]
print("论文类别的索引号:",lbl2idx,labels[:5])
# 1.3 读取并解析论文关系数据
# 读取论文关系数据,并将其转化为数据
edges = np.genfromtxt(path/'cora.cites',dtype=np.int32) # 将数据集中论文的引用关系以数据的形式读入
print(edges,np.shape(edges))
# 转化为新编号节点间的关系:将数据集中论文ID表示的关系转化为重新编号后的关系
edges = np.asarray([paper2idx[e] for e in edges.flatten()],np.int32).reshape(edges.shape)
print("新编号节点间的对应关系:",edges,edges.shape)
# 计算邻接矩阵,行与列都是论文个数:由论文引用关系所表示的图结构生成邻接矩阵。
adj = coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),shape=(len(labels), len(labels)), dtype=np.float32)
# 生成无向图对称矩阵:将有向图的邻接矩阵转化为无向图的邻接矩阵。Tip:转化为无向图的原因:主要用于对论文的分类,论文的引用关系主要提供单个特征之间的关联,故更看重是不是有关系,所以无向图即可。
adj_long = adj.multiply(adj.T < adj)
adj = adj_long + adj_long.T
# 1.4 加工图结构的矩阵数据
def normalize(mx): # 定义函数,对矩阵的数据进行归一化处理
    rowsum = np.array(mx.sum(1)) # 计算每一篇论文的字数==>02 对A中的边数求和,计算出矩阵A的度矩阵D^的特征向量
    r_inv = (rowsum ** -1).flatten() # 取总字数的倒数==>03 对矩阵A的度矩阵D^的特征向量求逆,并得到D^逆的特征向量
    r_inv[np.isinf(r_inv)] = 0.0 # 将NaN值取为0
    r_mat_inv = diags(r_inv) # 将总字数的倒数变为对角矩阵===》对图结构的度矩阵求逆==>04 D^逆的特征向量转化为对角矩阵,得到D^逆
    mx = r_mat_inv.dot(mx) # 左乘一个矩阵,相当于每个元素除以总数===》对每个论文顶点的边进行归一化处理==>05 计算D^逆与A加入自环(对角线为1)的邻接矩阵所得A^的点积,得到拉普拉斯矩阵。
    return mx
# 对features矩阵进行归一化处理(每行总和为1)
features = normalize(features) #在函数normalize()中,分为两步对邻接矩阵进行处理。1、将每篇论文总字数的倒数变成对角矩阵。该操作相当于对图结构的度矩阵求逆。2、用度矩阵的逆左乘邻接矩阵,相当于对图中每个论文顶点的边进行归一化处理。
# 对邻接矩阵的对角线添1,将其变为自循环图,同时对其进行归一化处理
adj = normalize(adj + eye(adj.shape[0])) # 对角线补1==>01实现加入自环的邻接矩阵A
# 1.5 将数据转化为张量,并分配运算资源
adj = torch.FloatTensor(adj.todense()) # 节点间关系 todense()方法将其转换回稠密矩阵。
features = torch.FloatTensor(features.todense()) # 节点自身的特征
labels = torch.LongTensor(labels) # 对每个节点的分类标签
# 划分数据集
n_train = 200 # 训练数据集大小
n_val = 300 # 验证数据集大小
n_test = len(features) - n_train - n_val # 测试数据集大小
np.random.seed(34)
idxs = np.random.permutation(len(features)) # 将原有的索引打乱顺序
# 计算每个数据集的索引
idx_train = torch.LongTensor(idxs[:n_train]) # 根据指定训练数据集的大小并划分出其对应的训练数据集索引
idx_val = torch.LongTensor(idxs[n_train:n_train+n_val])# 根据指定验证数据集的大小并划分出其对应的验证数据集索引
idx_test = torch.LongTensor(idxs[n_train+n_val:])# 根据指定测试数据集的大小并划分出其对应的测试数据集索引
# 分配运算资源
adj = adj.to(device)
features = features.to(device)
labels = labels.to(device)
idx_train = idx_train.to(device)
idx_val = idx_val.to(device)
idx_test = idx_test.to(device)
# 1.6 定义Mish激活函数与图卷积操作类
def mish(x): # 性能优于RElu函数
    return x * (torch.tanh(F.softplus(x)))
# 图卷积类
class GraphConvolution(nn.Module):
    def __init__(self,f_in,f_out,use_bias = True,activation=mish):
        # super(GraphConvolution, self).__init__()
        super().__init__()
        self.f_in = f_in
        self.f_out = f_out
        self.use_bias = use_bias
        self.activation = activation
        self.weight = nn.Parameter(torch.FloatTensor(f_in, f_out))
        self.bias = nn.Parameter(torch.FloatTensor(f_out)) if use_bias else None
        self.initialize_weights()
    def initialize_weights(self):# 对参数进行初始化
        if self.activation is None: # 初始化权重
            nn.init.xavier_uniform_(self.weight)
        else:
            nn.init.kaiming_uniform_(self.weight, nonlinearity='leaky_relu')
        if self.use_bias:
            nn.init.zeros_(self.bias)
    def forward(self,input,adj): # 实现模型的正向处理流程
        support = torch.mm(input,self.weight) # 节点特征与权重点积:torch.mm()实现矩阵的相乘,仅支持二位矩阵。若是多维矩则使用torch.matmul()
        output = torch.mm(adj,support) # 将加工后的邻接矩阵放入点积运算
        if self.use_bias:
            output.add_(self.bias) # 加入偏置
        if self.activation is not None:
            output = self.activation(output) # 激活函数处理
        return output
# 1.7 搭建多层图卷积网络模型
class GCN(nn.Module):
    def __init__(self, f_in, n_classes, hidden=[16], dropout_p=0.5): # 实现多层图卷积网络,该网的搭建方法与全连接网络的搭建一致,只是将全连接层转化成GraphConvolution所实现的图卷积层
        # super(GCN, self).__init__()
        super().__init__()
        layers = []
        # 根据参数构建多层网络
        for f_in, f_out in zip([f_in] + hidden[:-1], hidden):
            # python 在list上的“+=”的重载函数是extend()函数,而不是+
            # layers = [GraphConvolution(f_in, f_out)] + layers
            layers += [GraphConvolution(f_in, f_out)]
        self.layers = nn.Sequential(*layers)
        self.dropout_p = dropout_p
        # 构建输出层
        self.out_layer = GraphConvolution(f_out, n_classes, activation=None)
    def forward(self, x, adj): # 实现前向处理过程
        for layer in self.layers:
            x = layer(x,adj)
        # 函数方式调用dropout():必须指定模型的运行状态,即Training标志,这样可减少很多麻烦
        F.dropout(x,self.dropout_p,training=self.training,inplace=True)
        return self.out_layer(x,adj)
n_labels = labels.max().item() + 1 # 获取分类个数7
n_features = features.shape[1] # 获取节点特征维度 1433
print(n_labels,n_features) # 输出7与1433
def accuracy(output,y): # 定义函数计算准确率
    return (output.argmax(1) == y).type(torch.float32).mean().item()
### 定义函数来实现模型的训练过程。与深度学习任务不同,图卷积在训练时需要传入样本间的关系数据。
# 因为该关系数据是与节点数相等的方阵,所以传入的样本数也要与节点数相同,在计算loss值时,可以通过索引从总的运算结果中取出训练集的结果。
def step(): # 定义函数来训练模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.train()
    optimizer.zero_grad()
    output = model(features,adj) # 将全部数据载入模型,只用训练数据计算损失
    loss = F.cross_entropy(output[idx_train],labels[idx_train])
    acc = accuracy(output[idx_train],labels[idx_train]) # 计算准确率
    loss.backward()
    optimizer.step()
    return loss.item(),acc
def evaluate(idx): # 定义函数来评估模型 Tip:在图卷积任务中,无论是用模型进行预测还是训练,都需要将全部的图结构方阵输入
    model.eval()
    output = model(features, adj) # 将全部数据载入模型,用指定索引评估模型结果
    loss = F.cross_entropy(output[idx], labels[idx]).item()
    return loss, accuracy(output[idx], labels[idx])
# 1.8 使用Ranger优化器训练模型并可视化
model = GCN(n_features, n_labels, hidden=[16, 32, 16]).to(device)
from tqdm import tqdm
from Cora_ranger import * # 引入Ranger优化器
optimizer = Ranger(model.parameters()) # 使用Ranger优化器
# 训练模型
epochs = 1000
print_steps = 50
train_loss, train_acc = [], []
val_loss, val_acc = [], []
for i in tqdm(range(epochs)):
    tl,ta = step()
    train_loss = train_loss + [tl]
    train_acc = train_acc + [ta]
    if (i+1) % print_steps == 0 or i == 0:
        tl,ta = evaluate(idx_train)
        vl,va = evaluate(idx_val)
        val_loss = val_loss + [vl]
        val_acc = val_acc + [va]
        print(f'{i + 1:6d}/{epochs}: train_loss={tl:.4f}, train_acc={ta:.4f}' + f', val_loss={vl:.4f}, val_acc={va:.4f}')
# 输出最终结果
final_train, final_val, final_test = evaluate(idx_train), evaluate(idx_val), evaluate(idx_test)
print(f'Train     : loss={final_train[0]:.4f}, accuracy={final_train[1]:.4f}')
print(f'Validation: loss={final_val[0]:.4f}, accuracy={final_val[1]:.4f}')
print(f'Test      : loss={final_test[0]:.4f}, accuracy={final_test[1]:.4f}')
# 可视化训练过程
fig, axes = plt.subplots(1, 2, figsize=(15,5))
ax = axes[0]
axes[0].plot(train_loss[::print_steps] + [train_loss[-1]], label='Train')
axes[0].plot(val_loss, label='Validation')
axes[1].plot(train_acc[::print_steps] + [train_acc[-1]], label='Train')
axes[1].plot(val_acc, label='Validation')
for ax,t in zip(axes, ['Loss', 'Accuracy']): ax.legend(), ax.set_title(t, size=15)
# 输出模型的预测结果
output = model(features, adj)
samples = 10
idx_sample = idx_test[torch.randperm(len(idx_test))[:samples]]
# 将样本标签与预测结果进行比较
idx2lbl = {v:k for k,v in lbl2idx.items()}
df = pd.DataFrame({'Real': [idx2lbl[e] for e in labels[idx_sample].tolist()],'Pred': [idx2lbl[e] for e in output[idx_sample].argmax(1).tolist()]})
print(df)


3.2 Cora_ranger.py


#Ranger deep learning optimizer - RAdam + Lookahead combined.
#https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
#Ranger has now been used to capture 12 records on the FastAI leaderboard.
#This version = 9.3.19  
#Credits:
#RAdam -->  https://github.com/LiyuanLucasLiu/RAdam
#Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
#Lookahead paper --> MZhang,G Hinton  https://arxiv.org/abs/1907.08610
#summary of changes: 
#full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights), 
#supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
#changes 8/31/19 - fix references to *self*.N_sma_threshold; 
                #changed eps to 1e-5 as better default than 1e-8.
import math
import torch
from torch.optim.optimizer import Optimizer, required
import itertools as it
class Ranger(Optimizer):
    def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95,0.999), eps=1e-5, weight_decay=0):
        #parameter checks
        if not 0.0 <= alpha <= 1.0:
            raise ValueError(f'Invalid slow update rate: {alpha}')
        if not 1 <= k:
            raise ValueError(f'Invalid lookahead steps: {k}')
        if not lr > 0:
            raise ValueError(f'Invalid Learning Rate: {lr}')
        if not eps > 0:
            raise ValueError(f'Invalid eps: {eps}')
        #parameter comments:
        # beta1 (momentum) of .95 seems to work better than .90...
        #N_sma_threshold of 5 seems better in testing than 4.
        #In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.
        #prep defaults and init torch.optim base
        defaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay)
        super().__init__(params,defaults)
        #adjustable threshold
        self.N_sma_threshhold = N_sma_threshhold
        #now we can get to work...
        #removed as we now use step from RAdam...no need for duplicate step counting
        #for group in self.param_groups:
        #    group["step_counter"] = 0
            #print("group step counter init")
        #look ahead params
        self.alpha = alpha
        self.k = k 
        #radam buffer for state
        self.radam_buffer = [[None,None,None] for ind in range(10)]
        #self.first_run_check=0
        #lookahead weights
        #9/2/19 - lookahead param tensors have been moved to state storage.  
        #This should resolve issues with load/save where weights were left in GPU memory from first load, slowing down future runs.
        #self.slow_weights = [[p.clone().detach() for p in group['params']]
        #                     for group in self.param_groups]
        #don't use grad for lookahead weights
        #for w in it.chain(*self.slow_weights):
        #    w.requires_grad = False
    def __setstate__(self, state):
        print("set state called")
        super(Ranger, self).__setstate__(state)
    def step(self, closure=None):
        loss = None
        #note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.  
        #Uncomment if you need to use the actual closure...
        #if closure is not None:
            #loss = closure()
        #Evaluate averages and grad, update param tensors
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError('Ranger optimizer does not support sparse gradients')
                p_data_fp32 = p.data.float()
                state = self.state[p]  #get state dict for this param
                if len(state) == 0:   #if first time to run...init dictionary with our desired entries
                    #if self.first_run_check==0:
                        #self.first_run_check=1
                        #print("Initializing slow buffer...should not see this at load from saved model!")
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                    #look ahead weight storage now in state dict 
                    state['slow_buffer'] = torch.empty_like(p.data)
                    state['slow_buffer'].copy_(p.data)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)
                #begin computations 
                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']
                #compute variance mov avg
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                #compute mean moving avg
                exp_avg.mul_(beta1).add_(1 - beta1, grad)
                state['step'] += 1
                buffered = self.radam_buffer[int(state['step'] % 10)]
                if state['step'] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state['step']
                    beta2_t = beta2 ** state['step']
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma
                    if N_sma > self.N_sma_threshhold:
                        step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
                    else:
                        step_size = 1.0 / (1 - beta1 ** state['step'])
                    buffered[2] = step_size
                if group['weight_decay'] != 0:
                    p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
                if N_sma > self.N_sma_threshhold:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
                else:
                    p_data_fp32.add_(-step_size * group['lr'], exp_avg)
                p.data.copy_(p_data_fp32)
                #integrated look ahead...
                #we do it at the param level instead of group level
                if state['step'] % group['k'] == 0:
                    slow_p = state['slow_buffer'] #get access to slow param tensor
                    slow_p.add_(self.alpha, p.data - slow_p)  #(fast weights - slow weights) * alpha
                    p.data.copy_(slow_p)  #copy interpolated weights to RAdam param tensor
        return loss


目录
相关文章
|
21天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
221 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
160 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
88 3
图卷积网络入门:数学基础与架构设计
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
33 2
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
60 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
20天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
59 17
|
30天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
49 10