【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】

本文我们将介绍迁移学习中的一种常用技术:微调(fine tuning)。如下图所示,微调由以下4步构成。

  1. 在源数据集(如ImageNet数据集)上预训练一个神经网络模型,即源模型。
  2. 创建一个新的神经网络模型,即目标模型。它复制了源模型上除了输出层外的所有模型设计及其参数。我们假设这些模型参数包含了源数据集上学习到的知识,且这些知识同样适用于目标数据集。我们还假设源模型的输出层跟源数据集的标签紧密相关,因此在目标模型中不予采用。
  3. 为目标模型添加一个输出大小为目标数据集类别个数的输出层,并随机初始化该层的模型参数。
  4. 在目标数据集(如椅子数据集)上训练目标模型。我们将从头训练输出层,而其余层的参数都是基于源模型的参数微调得到的。

当目标数据集远小于源数据集时,微调有助于提升模型的泛化能力。

1. 实战案例:热狗识别

接下来我们来实践一个具体的例子:热狗识别。我们将基于一个小数据集对在ImageNet数据集上训练好的ResNet模型进行微调。该小数据集含有数千张包含热狗和不包含热狗的图像。我们将使用微调得到的模型来识别一张图像中是否包含热狗

关注GZH:阿旭算法与机器学习,回复:“微调实战”即可获取本文数据集与项目文档

首先,导入实验所需的包或模块。torchvision的models包提供了常用的预训练模型。如果希望获取更多的预训练模型,可以使用使用pretrained-models.pytorch仓库。

%matplotlib inline
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torchvision import models
import os
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

1.1 获取数据集

我们使用的热狗数据集含有1400张包含热狗的正类图像,和同样多包含其他食品的负类图像。各类的1000张图像被用于训练,其余则用于测试。

我们首先将压缩后的数据集下载到路径data_dir之下,然后在该路径将下载好的数据集解压,得到两个文件夹hotdog/trainhotdog/test。这两个文件夹下面均有hotdognot-hotdog两个类别文件夹,每个类别文件夹里面是图像文件。

data_dir = './data'
os.listdir(os.path.join(data_dir, "hotdog")) # ['train', 'test']

我们创建两个ImageFolder实例来分别读取训练数据集和测试数据集中的所有图像文件。

train_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/train'))
test_imgs = ImageFolder(os.path.join(data_dir, 'hotdog/test'))

下面画出前8张正类图像和最后8张负类图像。可以看到,它们的大小和高宽比各不相同。

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4)

在训练时,我们先从图像中裁剪出随机大小和随机高宽比的一块随机区域,然后将该区域缩放为高和宽均为224像素的输入。测试时,我们将图像的高和宽均缩放为256像素,然后从中裁剪出高和宽均为224像素的中心区域作为输入。此外,我们对RGB(红、绿、蓝)三个颜色通道的数值做标准化:每个数值减去该通道所有数值的平均值,再除以该通道所有数值的标准差作为输出。

注: 在使用训练模型时,一定要将预测数据,作训练时同样的预处理。

如果你使用的是torchvisionmodels,那就要求:

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

如果你使用的是pretrained-models.pytorch仓库,请务必阅读其README,其中说明了如何预处理。

# 指定RGB三个通道的均值和方差来将图像通道归一化
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_augs = transforms.Compose([
        transforms.RandomResizedCrop(size=224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize
    ])
test_augs = transforms.Compose([
        transforms.Resize(size=256),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        normalize
    ])

1.2 定义和初始化模型

我们使用在ImageNet数据集上预训练的ResNet-18作为源模型。这里指定pretrained=True来自动下载并加载预训练的模型参数。在第一次使用时需要联网下载模型参数。

pretrained_net = models.resnet18(pretrained=True)

不管你是使用的torchvision的models还是pretrained-models.pytorch仓库,默认都会将预训练好的模型参数下载到你的home目录下.torch文件夹。

下面打印源模型的成员变量fc。作为一个全连接层,它将ResNet最终的全局平均池化层输出变换成ImageNet数据集上1000类的输出。

print(pretrained_net.fc)

输出:

Linear(in_features=512, out_features=1000, bias=True)

注: 如果你使用的是其他模型,那可能没有成员变量fc(比如models中的VGG预训练模型),所以正确做法是查看对应模型源码中其定义部分,这样既不会出错也能加深我们对模型的理解。pretrained-models.pytorch仓库貌似统一了接口,但是我还是建议使用时查看一下对应模型的源码。

可见此时pretrained_net最后的输出个数等于目标数据集的类别数1000。所以我们应该将最后的fc成修改我们需要的输出类别数:

# 随机初始化输出层参数
pretrained_net.fc = nn.Linear(512, 2)
print(pretrained_net.fc)

输出:

Linear(in_features=512, out_features=2, bias=True)

此时,pretrained_netfc层就被随机初始化了,但是其他层依然保存着预训练得到的参数。由于是在很大的ImageNet数据集上预训练的,所以参数已经足够好,因此一般只需使用较小的学习率来微调这些参数,而fc中的随机初始化参数一般需要更大的学习率从头训练。PyTorch可以方便的对模型的不同部分设置不同的学习参数,我们在下面代码中将fc的学习率设为已经预训练过的部分的10倍。

output_params = list(map(id, pretrained_net.fc.parameters()))
feature_params = filter(lambda p: id(p) not in output_params, pretrained_net.parameters())
lr = 0.01
optimizer = optim.SGD([{'params': feature_params},
                       {'params': pretrained_net.fc.parameters(), 'lr': lr * 10}],
                       lr=lr, weight_decay=0.001)

1.3 使用微调技术训练模型

我们先定义一个使用微调的训练函数train_fine_tuning以便多次调用。

def train_fine_tuning(net, optimizer, batch_size=128, num_epochs=5):
    train_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/train'), transform=train_augs),
                            batch_size, shuffle=True)
    test_iter = DataLoader(ImageFolder(os.path.join(data_dir, 'hotdog/test'), transform=test_augs),
                           batch_size)
    loss = torch.nn.CrossEntropyLoss()
    d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

根据前面的设置,我们将以10倍的学习率从头训练目标模型的输出层参数。

train_fine_tuning(pretrained_net, optimizer)

输出:

training on  cuda
epoch 1, loss 3.1183, train acc 0.731, test acc 0.932, time 41.4 sec
epoch 2, loss 0.6471, train acc 0.829, test acc 0.869, time 25.6 sec
epoch 3, loss 0.0964, train acc 0.920, test acc 0.910, time 24.9 sec
epoch 4, loss 0.0659, train acc 0.922, test acc 0.936, time 25.2 sec
epoch 5, loss 0.0668, train acc 0.913, test acc 0.929, time 25.0 sec

作为对比,我们定义一个相同的模型,但将它的所有模型参数都初始化为随机值。由于整个模型都需要从头训练,我们可以使用较大的学习率。

scratch_net = models.resnet18(pretrained=False, num_classes=2)
lr = 0.1
optimizer = optim.SGD(scratch_net.parameters(), lr=lr, weight_decay=0.001)
train_fine_tuning(scratch_net, optimizer)

输出:

training on  cuda
epoch 1, loss 2.6686, train acc 0.582, test acc 0.556, time 25.3 sec
epoch 2, loss 0.2434, train acc 0.797, test acc 0.776, time 25.3 sec
epoch 3, loss 0.1251, train acc 0.845, test acc 0.802, time 24.9 sec
epoch 4, loss 0.0958, train acc 0.833, test acc 0.810, time 25.0 sec
epoch 5, loss 0.0757, train acc 0.836, test acc 0.780, time 24.9 sec

可以看到,微调的模型因为参数初始值更好,往往在相同迭代周期下取得更高的精度。

总结

  • 迁移学习将从源数据集学到的知识迁移到目标数据集上。微调是迁移学习的一种常用技术。
  • 目标模型复制了源模型上除了输出层外的所有模型设计及其参数,并基于目标数据集微调这些参数。而目标模型的输出层需要从头训练。
  • 一般来说,微调参数会使用较小的学习率,而从头训练输出层可以使用较大的学习率。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
47 11
|
7天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
25 7
|
30天前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
138 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
1月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
25 1
|
3天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
24 9
|
12天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
64 9
|
9天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
|
2天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
3天前
|
机器学习/深度学习 算法 数据处理
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、主要算法以及在实际场景中的应用效果。同时,文章也指出了当前深度学习在图像识别领域面临的挑战,包括数据不平衡、模型泛化能力、计算资源需求等问题,并展望了未来的研究方向。