跟着Nature Metabolism学作图:R语言ggplot2各种各样柱形图(1)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 跟着Nature Metabolism学作图:R语言ggplot2各种各样柱形图(1)

论文

Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity

https://www.nature.com/articles/s42255-022-00674-x#Sec58

s42255-022-00674-x.pdf

https://github.com/Osynchronika/sc_EC_obesity_atlas

大部分 作图的数据都有,可以试着用论文中提供的数据复现一下论文中的图

论文中figure2和figure3中有很多种柱形图,争取把每个种类的柱形图都复现一下

加载作图用到的R包

library(readxl)
library(tidyverse)
library(ggplot2)

首先是最普通的柱形图

figure3m

image.png

示例数据集如下

image.png

作图代码

fig3m.df<-read_excel("data/20230207/ggplot2barplot.xlsx",
                     sheet = "fig3m")
fig3m.df
ggplot(data=fig3m.df,aes(x=x,y=y))+
  geom_col(fill="#5ab033",color="black")+
  theme_classic()+
  scale_y_continuous(expand = expansion(mult = c(0,0)),
                     limits = c(0,0.5))+
  labs(x=NULL,y="log(FC)")+
  theme(panel.grid.major.y = element_line(),
        axis.text.x = element_text(angle=90,face="italic",
                                   vjust=0.5,hjust=1))

更多的时候会对数值进行排序,从小到大,或者从大到小

fig3m.df %>% 
  arrange(y) %>% 
  mutate(x=factor(x,levels = x)) %>% 
  ggplot(aes(x=x,y=y))+
  geom_col(fill="#5ab033",color="black")+
  theme_classic()+
  scale_y_continuous(expand = expansion(mult = c(0,0)),
                     limits = c(0,0.5))+
  labs(x=NULL,y="log(FC)")+
  theme(panel.grid.major.y = element_line(),
        axis.text.x = element_text(angle=90,face="italic",
                                   vjust=0.5,hjust=1)) -> p1

fig3m.df %>% 
  arrange(desc(y)) %>% 
  mutate(x=factor(x,levels = x)) %>% 
  ggplot(aes(x=x,y=y))+
  geom_col(fill="#5ab033",color="black")+
  theme_classic()+
  scale_y_continuous(expand = expansion(mult = c(0,0)),
                     limits = c(0,0.5))+
  labs(x=NULL,y="log(FC)")+
  theme(panel.grid.major.y = element_line(),
        axis.text.x = element_text(angle=90,face="italic",
                                   vjust=0.5,hjust=1)) -> p2

p1/p2

image.png

柱形图除了水平摆放,也可以垂直摆放,我们把作图代码里的x和y对调位置就行,如果数据集里的数据有正有负,那么柱子呈现的就是既有朝上的,又有朝下的

比如这个figure r s

image.png

代码


fig3r.df<-read_excel("data/20230207/ggplot2barplot.xlsx",
                     sheet = "fig3r")

fig3r.df %>% 
  mutate(x=factor(x,levels = c("Vcam1","Pecam1","Alcam","Icam1","Gja4","Gja5","F11r"))) %>% 
  ggplot(aes(x,y))+
  geom_col(fill="#ee7770",color="black")+
  geom_text(aes(y=c(-0.01,-0.01,-0.01,-0.01,-0.01,0.01,0.01),
                label=x),
            angle=90,hjust=c(1,1,1,1,1,0,0),
            color=c("#bf1818","#bf1818","#bf1818","#bf1818","black","black","blue"))+
  theme_classic()+
  theme(axis.line.x = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        panel.grid.major.y = element_line(),
        plot.title = element_text(hjust = 0.5))+
  scale_y_continuous(limits = c(-0.25,0.25),
                     breaks = c(-0.25,seq(-0.2,0.2,by=0.1),0.25),
                     expand = expansion(mult = c(0,0)),
                     labels = c("",seq(-0.2,0.2,by=0.1),""))+
  labs(x=NULL,y="log(FC)",title = "Art")

image.png

今天的推文就介绍这么多,明天继续

示例数据和代码可以给推文点赞,然后点击在看,最后留言获取

欢迎大家关注我的公众号

小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

微信公众号好像又有改动,如果没有将这个公众号设为星标的话,会经常错过公众号的推文,个人建议将 小明的数据分析笔记本 公众号添加星标,添加方法是

点开公众号的页面,右上角有三个点

image.png

点击三个点,会跳出界面

image.png

直接点击 设为星标 就可以了

image.png

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
3月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
3月前
|
数据可视化
R语言自定义图形:ggplot2中的主题与标签设置
【8月更文挑战第30天】`ggplot2`作为R语言中功能强大的绘图包,其自定义能力让数据可视化变得更加灵活和多样。通过合理使用`theme()`函数和`labs()`函数,以及`geom_text()`和`geom_label()`等几何对象,我们可以轻松创建出既美观又富有表达力的图形。希望本文的介绍能够帮助你更好地掌握`ggplot2`中的主题与标签设置技巧。
|
6月前
|
存储 数据可视化 数据挖掘
R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据
R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据
|
6月前
|
算法 数据可视化
R语言社区检测算法可视化网络图:ggplot2绘制igraph对象分析物种相对丰度
R语言社区检测算法可视化网络图:ggplot2绘制igraph对象分析物种相对丰度
|
6月前
r语言ggplot2误差棒图快速指南
r语言ggplot2误差棒图快速指南
|
6月前
|
数据可视化
R语言ggplot2 对Facebook用户数据可视化分析
R语言ggplot2 对Facebook用户数据可视化分析
|
编解码 数据可视化 数据挖掘
R语言之 ggplot 2 和其他图形
R语言之 ggplot 2 和其他图形
96 0
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
19天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化

热门文章

最新文章