这盘「大脑」80万细胞,5分钟学会打乒乓球完爆AI!(2)

简介: 这盘「大脑」80万细胞,5分钟学会打乒乓球完爆AI!

那神经元如何主动推理,从而完成游戏的呢?

为了教会DishBrain打乒乓球,研究小组让这片神经元去玩了单人乒乓球游戏。

研究人员利用电信号刺激电极阵列上的神经元,并将其活动状态记录下来。

其中,电信号发送不同阵列区域代表乒乓球的位置,盘子两侧的微电极会指示球是在球拍的左侧还是右侧,而信号频率则反映了球的距离。

而在电极阵列的上半部分的神经元,负责感知乒乓球的位置,下半部分的神经元分左右两块,负责输出乒乓球拍上下移动的距离。

然后,DishBrain就可以产生电信号去移动球拍接球了。

但是开始,它们的表现很差劲。

为了玩好游戏,神经元需要反馈。因此团队开发了一种反馈软件,可以在DishBrain错过球时通过电极对它们进行批评。

为了优化误差,Cortical Labs团队主要使用了最小化变分自由能的预测编码公式,又名卡尔曼滤波器。

这就使得系统在打乒乓球时得到了改进,在短短五分钟内,DishBrian就学会根据球的位置来回移动球拍了。

诶,好像DeepMind的AI也玩过这个游戏?没错,2013年,DeepMind首次通过Atari游戏演示了其人工智能强化学习算法的性能。

目前,DishBrain打游戏的效果还是不如DeepMind自家发展了这么多年的强化学习算法。但是AI玩这个得90分钟才学得会,而这层脑细胞可是仅仅用了5分钟就玩得有模有样了。

这样一来,利用活体大脑神经元的计算能力来创造合成生物智能 (SBI)也就完成了。

有趣的的是,未来研究人员表示还要测试酒精,以及毒品对DishBrain玩乒乓球游戏能力的影响。

Cortical Labs实验室Brett Kagan博士称,

我们正在尝试用乙醇创建一个剂量反应曲线——基本上就是让这些神经元细胞「喝醉」,看看它们是否像人们喝酒时那样玩得更差。


计算机可以模仿人脑了?


在目前,DishBrain在打乒乓球时采用的策略还是缓慢而片面的,让它们赢得电子竞技冠军,听起来也相当遥远,但是这些研究反映了活体组织与硅技术融合的潜力。

这是第一个证明了神经元会调整自己的活动,以完成特定任务的合成生物智能实验。并且,如果提供它们反馈,它们还能学会更好地执行任务。

这项研究在疾病建模,发现药物,理解大脑如何工作、智力如何产生,研究药物如何影响大脑的活动等方面,都具有巨大的潜力。

DishBrain的开发者、澳大利亚生物技术初创公司Cortical Labs的神经科学家Brett Kagan说: 「我们已经证明,我们可以与活的生物神经元相互作用,使得它们改变自己的活动,从而产生类似于智能的东西。」

「这是理解智力的一个新方向,」Kagan说。「它不仅告诉我们,作为人类意味着什么,还让我们明白,在现在这个不断变化的世界中,什么是『活着』,什么是『聪明』,什么是『处理信息』、『有感知能力』。」

英国伦敦大学学院的理论神经科学家Karl Friston说:「这项成果的开创性在于,为神经元配备了感觉——反馈——对世界采取行动的能力。」

几年Friston提出了一种称为自由能原理的理论,该理论提出,所有生物系统的行为方式都可以缩小预期与实践之间的差距——换句话说,世界可以变得更加可预测。

自由能理论

根据Friston的理论,通过调整行为,世界就会变得更加可预测,而DishBrain就是在生物学上证明了这一点。

Kagan说,「DishBrain的实验,本质上是在创造可预测性更高的环境。」

DishBrain实验,给人类带来了一些激动人心的可能性,尤其是在人工智能和计算方面。

要知道,人脑包含大约80到1000亿个神经元,比任何计算机都强大得多,最好的计算机都很难复制人脑。目前最接近的情况,是麻省理工的工程师设计出的带有人工突触的芯片,让我们可以用82,944个处理器、1 PB的主内存和40分钟来复制1%的人类大脑活动的一秒钟。

MIT人工突触芯片

如果这个架构更像是一个真正的大脑——甚至可能是一个像DishBrain那样的合成生物系统——也许计算机复制人脑的目标就不会遥不可及了。

DishBrain还能让我们从细胞水平了解各种药物对大脑的影响。有朝一日,使用从患者皮肤干细胞逆向培养的神经元,它甚至可以制造针对特定患者的定制药物。

「这项成果的潜力太令人兴奋了:这意味着我们不必再创建『数字双胞胎』来测试治疗效果,」Fristo说

用于私人定制药物的Digital twin

「原则上,我们现在拥有最终极的仿生『沙盒』,可以在其中测试药物和遗传变异的影响,这个沙盒由你的大脑和我的大脑中发现的完全相同的计算(神经元)元素构成。

无独有偶,为了推动神经科学的研究,同在今天Nature的一篇研究将人鼠大脑完美结合,培养出了类脑器官。

研究中,来自斯坦福大学的研究人员将人类大脑诱导性多能干细胞移植到了大鼠正在发育的大脑中。

如图,亮绿色部分是类脑器官。



结果发现,类脑器官可以与大鼠的大脑一同发育、成熟,同时,这些类器官会逐渐发展出血管,为自己的发育提供营养。

最后通过与大脑的神经回路部分地整合到一起,真正成为大脑的一部分。

有了类脑器官,科学家便可以在培养皿中操控神经元,找到潜在神经疾病背后的机制。

网友神评论


「这是否意味着即使没有『存在』也存在某种形式的意识。」

讨论顿时上升到了哲学高度……

「我想成为第一个欢迎我们新的脑细胞霸主的人。」

「我们需要一个更大的培养皿。」

「我想要一个像攻壳机动队那样的机器身体。」

「神经漫游者。科技与魔法的完美结合。」

「令人难以置信,它让我想起了David Eagleman的TED演讲。他认为人脑是一个原始的I/O设备。作为婴儿,它正在学习处理输入数据,并且在任何时候我们都可以添加额外的输入,大脑将开始解释新数据。」

「 让我想起黑镜中的『饼干』的情节……这让人毛骨悚然。」

「但是神经元喜欢这个游戏吗?」

「我已经阅读了数百条评论,你是第一个提出这个重要问题的人!」

「这些细胞再进步下去,几天之内就会成为特朗普的支持者。」

「它们已经超过了一般特朗普支持者的智商。」

「在我看来,这就是奴隶制,想想这项技术会被用在什么地方吧。」


参考资料:https://www.cnet.com/science/live-brain-cells-in-dish-quickly-learn-to-play-classic-game-pong/https://www.nature.com/articles/d41586-022-03229-yhttps://www.engadget.com/brain-cells-pong-rats-182835843.html

相关文章
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
64 25
|
5月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【8月更文挑战第1天】在当今科技飞速发展的时代,AI已成为日常生活中不可或缺的一部分。神经网络作为AI的核心,通过模拟人脑中的神经元连接方式处理复杂数据模式。利用Python及其强大的库TensorFlow,我们可以轻松构建神经网络模型。示例代码展示了如何建立一个含有两层隐藏层的简单神经网络,用于分类任务。神经网络通过反向传播算法不断优化权重和偏置,从而提高预测准确性。随着技术的进步,神经网络正变得越来越深、越来越复杂,能够应对更加艰巨的挑战,推动着AI领域向前发展。
59 2
|
3月前
|
机器学习/深度学习 人工智能 算法
Nature子刊:AI模型测大脑年龄,究竟哪些因素会加速大脑衰老?
【10月更文挑战第7天】《自然医学》杂志近期发布了一项研究,介绍了一种名为BrainAge的人工智能模型,该模型可预测个体的大脑年龄并分析影响大脑衰老的因素。研究团队来自美国加州大学旧金山分校,利用英国生物银行的近50,000名参与者的数据,发现高血压、糖尿病、肥胖、吸烟、饮酒、缺乏运动及遗传因素均与大脑衰老有关。尽管存在数据集限制等局限性,BrainAge模型仍为研究大脑衰老和相关疾病提供了重要工具。
80 1
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
56 10
|
8月前
|
存储 人工智能 自然语言处理
掌握AI摘要技术解锁个人第二大脑
掌握AI摘要技术解锁个人第二大脑
196 0
|
机器学习/深度学习 人工智能 编解码
人脑90%都是自监督学习,AI大模型离模拟大脑还有多远?
人脑90%都是自监督学习,AI大模型离模拟大脑还有多远?
231 0
|
数据采集 人工智能 数据可视化
AI读脑炸裂!扫描大脑画面,Stable Diffusion逼真复现图像
AI读脑炸裂!扫描大脑画面,Stable Diffusion逼真复现图像
203 0
|
人工智能 边缘计算 安全
【年终特辑】看见科技创新力量 洞见时代创业精神—航空航天—星测未来:给卫星装上AI大脑瞄准卫星智能化专业市场
【年终特辑】看见科技创新力量 洞见时代创业精神—航空航天—星测未来:给卫星装上AI大脑瞄准卫星智能化专业市场
190 0
|
存储 机器学习/深度学习 人工智能
模拟大脑功能,这个AI模型真正实现像人一样持续学习
模拟大脑功能,这个AI模型真正实现像人一样持续学习
181 0