7月最受欢迎AI研究榜单出炉,马毅最新「标准模型」排名第9

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 7月最受欢迎AI研究榜单出炉,马毅最新「标准模型」排名第9
【新智元导读】近日,有Reddit网友整理了一份七月最受欢迎的AI研究榜单,快来看看都有哪些重量级研究~


七月最受欢迎的AI研究榜单出炉啦!

 

这份由Reddit网友@bycloudai整理的榜单,根据推特点赞、转发和Github星数排序,列入了2022年七月排名前十的AI研究,其中包括DeepMind、Google、MIT CSAIL等知名机构。

 

 

下面一起来看看上榜的都是何方大佬~

 

TOP1: Formal Algorithms for Transformers

 

作者:Mary Phuong,Marcus Hutter

机构:DeepMind

 

 

摘要:本文旨在成为一个独立的、数学上精确的Transformer架构和算法概述。它涵盖了Transformer是什么、它们是如何训练的、它们的用途、它们的关键架构组件以及最突出的模型的预览。

 

Top2:Confident Adaptive Language Modeling

 

作者:Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q Tran, Yi Tay, Donald Metzler

机构:谷歌,MIT CSAIL

 

 

摘要:基于Transformer 的大型语言模型 (LLM) 的最新进展已推动许多任务的性能显著提高。然而性能提升的同时模型的大小也在急剧增加,这可能导致推理过程复杂以及成本增加。然而在实践中,大型语言模型产生的一系列迭代是由不同程度的难度组成的。

 

在这项工作中,我们介绍了 Confident Adaptive Language Model-ing (CALM),这是一个动态分配不同数量的计算机输入和生成时长的框架。


早期退出解码涉及我们在这里解决的几个问题,例如:(1)使用什么置信度度量;(2) 将序列级约束与本地token的退出决策联系起来;(3) 回溯由于先前token提前退出而丢失的隐藏表示。通过对三种不同文本生成任务的理论分析和实验,我们证明了我们的框架在减少计算方面的功效——潜在加速高达3倍,同时可保持高性能。

 

Top3:Language Models (Mostly) Know What They Know

作者:Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan等

机构:Anthropic

 

 

摘要:本文研究了语言模型是否可以评估自己主张的有效性并预测他们将能够正确回答哪些问题。我们首先表明,当以正确的格式提供较大的模型时,它们可以很好地针对各种多项选择和真/假问题进行校准。因此,我们可以通过要求模型首先提出答案,然后评估其答案正确的概率P(True)来对开放式抽样任务进行自我评估。

 

我们发现 P(True) 在各种任务中的性能、校准和缩放都令人兴奋。当我们允许模型在预测一种特定可能性的有效性之前考虑许多自己的样本时,自我评估的性能会进一步提高。接下来,我们研究是否可以训练模型来预测P(IK),即「我知道问题的答案」的概率,而不参考任何特定的建议答案。

 

Top4:YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time objectdetectors

 

作者:Chien-Yao Wang, Alexey Bochkovskiy, Hong-Yuan Mark Liao

机构:Institute of Information Science, Academia Sinica

 

 

Top5:Language Model Cascades

 

作者:David Dohan, Winnie Xu, Aitor Lewkowycz等

机构:谷歌

 

 

Top6:Collaborative Neural Rendering using AnimeCharacter Sheets

 

作者:Zuzeng Lin, Ailin Huang, Zhewei Huang等

机构:武汉大学,旷视科技

 

 

Top7:Neural Networks and the Chomsky Hierarchy

 

作者:Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein等

机构:DeepMind

 

 

Top8:Language modelling with Pixels

 

作者:Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello等

机构:哥本哈根大学,约翰霍普金斯大学,乌普萨拉大学

 

 

Top9: On the Principles of Parsimony and Self-Consistencyfor the Emergence of Intelligence

 

作者:马毅,曹颖,沈向洋

机构:加利福尼亚大学伯克利分校,粤港澳大湾区数字经济研究院

 

 

这篇论文是马毅教授联手计算机科学家沈向洋博士、神经科学家曹颖教授发表的一篇对人工智能出现及发展的研究综述,堪称对近70年来AI发展的提纲挈领之作。


Top10:Scaling Laws vs Model Architectures:How does Inductive Bias Influence Scaling

 

作者:Yi Tay, Mostafa Dehghani, Samira Abnar

机构:谷歌,DeepMind

 

 

看完了Top10的各方大佬的论文,再来说说这次榜单有趣的几个细节。

 

众所周知,推特点赞是可以用机器人刷的,作者用点赞数作为榜单的关键指标确实有待商榷。

 

 

另外,此前呼声极高的「无限视觉生成模型NUWA-Infinity」在推特点赞数方面只排在第12位,但Github星数已超过2.4k。

由于NUWA Infinity早在2021年11月就发布了首个版本,而本次榜单只计入了之后的第二版的点赞数,因此只排在第12位。

相关文章
|
1天前
|
人工智能 Python
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
ImBD是一款由复旦大学、华南理工大学等机构联合推出的AI内容检测器,能够快速识别机器修订文本,适用于多种场景,显著提升检测性能。
23 8
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
45 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
16天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
84 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
25天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
76 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
27天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
66 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
59 25
|
12天前
|
人工智能
阿里云领跑生成式AI工程领域,两大维度排名Gartner®生成式AI工程Market Quadrant全球第二
阿里云凭借强劲实力入选Gartner 《Innovation Guide for Generative AI Technologies》所有领域的新兴领导者象限。
|
21天前
|
人工智能 自然语言处理 物联网
AI Safeguard联合 CMU,斯坦福提出端侧多模态小模型
随着人工智能的快速发展,多模态大模型(MLLMs)在计算机视觉、自然语言处理和多模态任务中扮演着重要角色。
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
142 97
|
14天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营

热门文章

最新文章