【Pytorch神经网络实战案例】01 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法①

简介: 【Pytorch神经网络实战案例】01 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法①
import torch
import torchvision
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
# 取消全局证书验证(当项目对安全性问题不太重视时,推荐使用,可以全局取消证书的验证,简易方便)
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# 准备数据集
train_data=torchvision.datasets.CIFAR10("datas-train",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data=torchvision.datasets.CIFAR10("datas-test",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 获得数据集的长度
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练--数据集的长度为:{}".format(train_data_size))
print("测试--数据集的长度为:{}".format(test_data_size))
# 利用DataLoader加载数据集
# Batch Size定义:一次训练所选取的样本数。
# Batch Size的大小影响模型的优化程度和速度。同时其直接影响到GPU内存的使用情况,假如你GPU内存不大,该数值最好设置小一点。
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
# 创建网络模型
# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            # Conv2d中
            ##in_channels:输入的通道数目 【必选】
            ##out_channels: 输出的通道数目 【必选】
            ##kernel_size:卷积核的大小,类型为int 或者元组,当卷积是方形的时候,只需要一个整数边长即可,卷积不是方形,要输入一个元组表示 高和宽。【必选】
            ##stride: 卷积每次滑动的步长为多少,默认是 1 【可选】
            ##padding(手动计算):设置在所有边界增加值为0的边距的大小(也就是在feature map 外围增加几圈 0 ),
            ##                 例如当 padding =1 的时候,如果原来大小为 3 × 3 ,那么之后的大小为 5 × 5 。即在外围加了一圈 0 。【可选】
            ##dilation:控制卷积核之间的间距【可选】
            nn.Conv2d(3, 32, 5, 1, 2),
            # MaxPool2d中:
            # #kernel_size(int or tuple) - max pooling的窗口大小,
            # # stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
            # # padding(int or tuple, optional) - 输入的每一条边补充0的层数
            # # dilation(int or tuple, optional) – 一个控制窗口中元素步幅的参数
            # # return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助
            # # ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            # nn.Linear()是用于设置网络中的全连接层的,在二维图像处理的任务中,全连接层的输入与输出一般都设置为二维张量,形状通常为[batch_size, size]
            #              相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
tudui=Tudui()
#使用GPU训练方法①---》模型修改
tudui=tudui.cuda()
# 损失函数
# 使用交叉熵==>分类
loss_fn=nn.CrossEntropyLoss()
if torch.cuda.is_available():
    #使用GPU训练方法①---》损失函数修改
    loss_fn=loss_fn.cuda()
# 优化器
learning_rate=0.01 #学习速率
optimizer=torch.optim.SGD(tudui.parameters(),lr=learning_rate)
#设置训练网络的参数
#记录训练的次数
total_train_step=0
# 记录测试的次数
test_train_step=0
# 训练的轮次
epoch=10
# 添加tensorboard
writer=SummaryWriter("firstjuan")
for i in range(epoch): #0-9
    print("-----------第{}轮训练开始-----------".format(i+1))
    tudui.train()
    # 训练步骤开始
    for data in train_dataloader:
        imgs,targets=data
        if torch.cuda.is_available():
            # 使用GPU训练方法①--》测试数据修改
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs=tudui(imgs)
        #将计算所得的output的数值与真实数值进行对比,即求差
        loss=loss_fn(outputs,torch.squeeze(targets).long())
        #优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 记录训练train的次数+1
        total_train_step=total_train_step+1
        if total_train_step %100==0 : #减少输出 方便查看测试结果
            print("训练次数:{},损失值loss:{}".format(total_train_step,loss))
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    # 测试步骤开始
    tudui.eval()
    total_test_loss=0
    # 正确率
    total_accuracy=0
    with torch.no_grad(): #保证网络模型的梯度保持没有,仅需要测试,不需要对梯度进行优化与调整
        for data in test_dataloader:
            imgs,targets=data
            if torch.cuda.is_available():
                # 使用GPU训练方法①--》测试数据修改
                imgs=imgs.cuda()
                targets=targets.cuda()
            outputs=tudui(imgs)
            loss=loss_fn(outputs,targets)
            total_test_loss=total_test_loss+loss.item()
            # 1为横向 0为竖 计算正确率
            accuracy=(outputs.argmax(1)==targets).sum()
            total_accuracy=total_accuracy+accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率accuracy:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_accuracy", total_test_loss, test_train_step)
    writer.add_scalar("test_loss",total_accuracy/test_data_size,test_train_step)
    # 记录测试test的次数+1
    test_train_step=test_train_step+1
    # 保存模型
    # torch.save(tudui.state_dict(),"tudui_{}".format(i))
    torch.save(tudui,"tudui_{}".format(i))
    print("模型已经保存")
writer.close()


import torch
from torch import nn
# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            # Conv2d中
            ##in_channels:输入的通道数目 【必选】
            ##out_channels: 输出的通道数目 【必选】
            ##kernel_size:卷积核的大小,类型为int 或者元组,当卷积是方形的时候,只需要一个整数边长即可,卷积不是方形,要输入一个元组表示 高和宽。【必选】
            ##stride: 卷积每次滑动的步长为多少,默认是 1 【可选】
            ##padding(手动计算):设置在所有边界增加值为0的边距的大小(也就是在feature map 外围增加几圈 0 ),
            ##                 例如当 padding =1 的时候,如果原来大小为 3 × 3 ,那么之后的大小为 5 × 5 。即在外围加了一圈 0 。【可选】
            ##dilation:控制卷积核之间的间距【可选】
            nn.Conv2d(3, 32, 5, 1, 2),
            # MaxPool2d中:
            # #kernel_size(int or tuple) - max pooling的窗口大小,
            # # stride(int or tuple, optional) - max pooling的窗口移动的步长。默认值是kernel_size
            # # padding(int or tuple, optional) - 输入的每一条边补充0的层数
            # # dilation(int or tuple, optional) – 一个控制窗口中元素步幅的参数
            # # return_indices - 如果等于True,会返回输出最大值的序号,对于上采样操作会有帮助
            # # ceil_mode - 如果等于True,计算输出信号大小的时候,会使用向上取整,代替默认的向下取整的操作
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            # nn.Linear()是用于设置网络中的全连接层的,在二维图像处理的任务中,全连接层的输入与输出一般都设置为二维张量,形状通常为[batch_size, size]
            #              相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
if __name__ == '__main__':
    tudui = Tudui()
    input = torch.ones((64, 3, 32, 32))
    output = tudui(input)
    print(output.shape)
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
97 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
6月前
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】Fast R-CNN中的RoI(Region of Interest)池化详解
【PyTorch实战演练】Fast R-CNN中的RoI(Region of Interest)池化详解
184 1
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
93 10
|
17天前
|
弹性计算 异构计算
2024年阿里云GPU服务器多少钱1小时?亲测价格查询方法
2024年阿里云GPU服务器每小时收费因实例规格不同而异。可通过阿里云GPU服务器页面选择“按量付费”查看具体价格。例如,NVIDIA A100的gn7e实例为34.742元/小时,NVIDIA A10的gn7i实例为12.710156元/小时。更多详情请访问阿里云官网。
60 2
|
6月前
|
机器学习/深度学习 Python
【Python实战】——神经网络识别手写数字(三)
【Python实战】——神经网络识别手写数字
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
6月前
|
机器学习/深度学习 数据可视化 Python
【Python实战】——神经网络识别手写数字(二)
【Python实战】——神经网络识别手写数字(三)
|
5月前
|
机器学习/深度学习 数据采集 存储
神经网络案例实战
使用PyTorch解决手机价格分类问题:收集包含RAM、存储等特征的手机销售数据,将价格分为4个等级的分类任务。步骤包括数据预处理、特征工程、选择神经网络模型、训练、评估和预测。模型使用Sigmoid激活的三层网络,训练时采用交叉熵损失和SGD优化器。通过调整模型结构、优化器和学习率以优化性能。
|
5月前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
136 0
|
6月前
|
机器学习/深度学习 数据采集 TensorFlow
TensorFlow实战:构建第一个神经网络模型
【4月更文挑战第17天】本文简要介绍了如何使用TensorFlow构建和训练一个简单的神经网络模型,解决手写数字识别问题。首先,确保安装了TensorFlow,然后了解神经网络基础、损失函数和优化器以及TensorFlow的基本使用。接着,通过导入TensorFlow、准备MNIST数据集、数据预处理、构建模型(使用Sequential API)、编译模型、训练和评估模型,展示了完整的流程。这个例子展示了TensorFlow在深度学习中的应用,为进一步探索复杂模型打下了基础。

热门文章

最新文章

下一篇
无影云桌面