m无线传感器网络WSN的时间同步捕获算法matlab仿真,对比单步捕获法,双步捕获法以及锯齿波匹配捕获法

简介: m无线传感器网络WSN的时间同步捕获算法matlab仿真,对比单步捕获法,双步捕获法以及锯齿波匹配捕获法

1.算法仿真效果
matlab2022a仿真结果如下:

73900f799baf4c701b51cc69c9a699d2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
dbd3da9c05843d8a651bbb101959db02_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
366528bb6825bf76fd5bb59dc64a9e38_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fe0f536d8c33a386c3239edda7df2e04_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
image.png

2.算法涉及理论知识概要
2.1WSN同步概要

   由于,信息传输和计算会消耗大量的能量,无线传感器网络中的节点都是由电池供电,能源有限,让节点长时间持续时间同步过程以达到极高精确度的时钟同步将导致极大的损耗,节点持续进行时钟同步对能量有限的无线传感器网络来说是一种巨大的浪费。因此,在实际中,需要对节点的同步精度进行规划,此外,为了降低每个节点的反馈次数,可以考虑多节点协作的反馈方式。对于原算法,主机和目标节点的反馈是基于1对1的方式,即对于任何一个节点,需要进行同步,那么需要通过主机和节点之间进行反馈运算:

   每个节点需要做相位估计和反馈操作。为了进一步降低每个节点损耗,需要降低每个节点的运算量,那么我们采取如下的网络结构进行。

895338c4e2c93159ca382cabac620d06_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  即节点将相位估计的结果,以最小的功率发送到相邻节点,再由相邻节点发送给主机,这样,对于节点1,其在同一时间段内,只需要使用相位估计和短距离发送的功率,从而大大降低了单个节点的使用寿命。

d3f30191d49b01bcefd89b9a2ff0a41d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    采用这种方式,可以大大降低发送功率,但是采用这种方式,需要在主机端设计多对一的接收机制,需要引入波速成形等技术。通过上述的思想,可以降低单个节点损耗,从而延长了单个节点的使用寿命。而采用多个相邻节点组合的方式,更进一步降低了发送节点的功耗,在接收端只要通过接收n个节点的信息来提取目标节点1的相位估计值。

2.2锯齿波匹配法

    利用锯齿波的这种线性特性进行分析:

60586820ee30aaeb8aea7fb8974e4870_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   锯齿波的鉴相范围是指PFD的输出电压随相位误差单调、线性变化的范围。理想的PFD

的鉴相范围是,如商图所示。

c66b10d1e80b84b0ea5598db34ef69a9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

以上就是使用锯齿波线性特性的基本原理,下面将其特性应用到本课题中。

   由于实际中,主机发送的是窄脉冲信号,而不是直接发送一个相位信息,因此,需要通过将主机发送的窄脉冲信号和本地节点的锯齿波做相关操作,获得相关值。

2.3单步捕获算法和双步捕获算法的优缺点

   两步捕获算法(MS算法)包括两次主机捕获过程,其区别在于主机所发射的同步脉冲信号宽度。基本思想是把搜索空间内总的相位点数F划分为Q个子区间,每个子区间包括M个相位。Q和M的表示为:Q=[F/M],[ ]表示向上取整。正确相位就在某个子区间内。两步过程为:

第一步,粗相位的捕获:

4d039d9772626696b422e9c02322f0bf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    对Q个相位值,首先判断Q/2情况,计算其相关值(不同于原算法的相关运算),判断其正负,如果为正,所以真实相位<Q/2,如果为负说明真实相位>Q/2。

   然后进入下一个搜索区间,比如进入了1~Q/2区间,开始计算与Q/4的相关值,,,依次进行下去,那么搜索到正确值所需要的运算次数为:log2(Q)。

那么其平均搜索次数为(1+log2(Q))/2 < (1+Q)/2

第二步:精相位的捕获:

和上面同样道路,在定位粗相位的时候,开始下一步搜索,其平均搜索次数仅为

(1+log2(M))/2

2199500221879a5fe47dc7f033ce5a1f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

Ts1   = 10;     % 初步搜索步长
Ts2   = Ts/Ts1; % 初步搜索宽度,要求Ts是Ts1整数倍!
T     = 1;      % 捕获积分宽度,单位:信号周期数
 
N     = 500;    % 特定相位差条件下求均值的随机次数
pnacq = zeros(1,Ts);
nnacq = zeros(1,N);
 
 
Nacq  = zeros(1,length(fPd));       % 仿真获得不同fPd时的平均反馈次数
for pdi=1:length(fPd)
    for i=1:Ts          % 不同初始相位求平均
        rndphase = i-1; % 初始相位差, 设本振相位为0            
            rndp1 = floor(rndphase/Ts1);       % 分为两步搜索
            rndp2 = mod(rndphase,Ts1);
        for j=1:N       % 指定初始相位条件求平均
 
            nacq  = 0;                  % 捕获时长,单位:T
            curphase = rndp1;           % 主机当前调整的相位
            while(1)
                if(curphase==0)         % 正好在同步相位位置
                    if(rand()>fPd(pdi) || rand()>rPack)   % 同步漏检 或 同步确认丢失
                        curphase = Ts2-1;
                    else
                        nacq = nacq + 1; % 同步确认,设同步确认是理想的
                        break;          % 同步捕获完成
                    end;
                else
                    if(rand()<fPfa)     % 出现虚警
                        curphase = curphase -1;
                        nacq = nacq + 1;
                    else
                        curphase = curphase -1;
                    end;
                end;
            end;
            nacq = nacq+1;
            
            % 第二步搜索
            curphase = rndp2;
            while(1)
.................................................
            end;
            
            nnacq(j)=nacq+1;
        end; % end j cycle
        pnacq(i)=mean(nnacq);
 
    end; % end i cycle
    Nacq(pdi) = mean(pnacq)
 
end;
plot(fPd,Nacq,'gx-'); hold on;
save sbfkcs.mat fPd Nacq
相关文章
|
16天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
151 80
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
60 31
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
12天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
6天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
16天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
252 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
119 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码