【无人机三维路径规划】基于强化学习实现复杂地形无人机三维路径规划附matlab代码

简介: 【无人机三维路径规划】基于强化学习实现复杂地形无人机三维路径规划附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在搜救领域中,透过程序完成半自主或自主飞行控制,无人机能够协助救难人员更好地完成救援任务.搜救任务中涉及到多个目标间的搜索,相比于单目标的搜索问题,需要更复杂的算法或是奖励重塑形式,才能改进其稀疏奖励的问题.此外,搜救任务比起一般的强化学习问题,更讲究时效性.如何利用搜救的先验知识对算法进行改进,从而提高完成任务的效率和训练时间,是机器学习应用的研究重点.

⛄ 部分代码

function  MakeData()

%%%%%%%%制作地形数据

load ('TerrainData.mat');

MAX_X = 100;

MAX_Y = 100;

MAX_Z = 50;

Cut_Data = Final_Data(301:400,101:200);

mesh(double(Cut_Data));

MAX_Final_Data = max(max(Cut_Data));

MIN_Final_Data = min(min(Cut_Data));

for i=1:100

   for j=1:100

       New_Data(i,j) = ceil((Cut_Data(i,j)-MIN_Final_Data)/100); % 朝正无穷大四舍五入,减去最小值可以减少搜索结点

       Display_Data(i,j) = (Cut_Data(i,j)-MIN_Final_Data)/100;

   end

end

%%%%%%%%% Map初始化

% 可以走的区域为2,目标为0,障碍为-1

MAP=2*(ones(MAX_X,MAX_Y,MAX_Z));

for i=1:MAX_X

   for j=1:MAX_Y

       Z_UpData = New_Data(i,j);

       for z = 1:Z_UpData

           MAP(i,j,z) = -1;

       end

   end

end

%%%%%%%%输入异常气象区域信息

CLOSED = [];

k = 1;

c2 = size(CLOSED,1);

for i_z=1:50

   for i_x=1:100

       for i_y=1:100

           flag = 1;

           Length = (i_x-60)^2 + (i_y-70)^2;            

           for c1=1:c2

               if (i_x == CLOSED(c1,1) && i_y == CLOSED(c1,2) && i_z == CLOSED(c1,3))

                   flag = 0;

               end

           end

           if Length <= 56.25 && flag == 1

               Threaten_Weather(k,1)=i_x;

               Threaten_Weather(k,2)=i_y;

               Threaten_Weather(k,3)=i_z;

               k = k+1;

           end

       end

   end

end

%%%%%%%%%%生成太阳辐射数据

solar2dim = 3.491 + (4.491-3.491) * rand(100,100);

surf(solar2dim(1:100,1:100)','linestyle','none');

xlabel('X Points','FontWeight', 'bold');

ylabel('Y Points','FontWeight', 'bold');

title('kwh/kwp/day','FontWeight', 'bold');

set(gca,'fontsize',9,'fontname','Times New Roman');


view(0, 90);

solar2dim = solar2dim./4.491;

solar3dim = [];

for i = 1:50

   solar3dim(:, :, i) = solar2dim;

end

save('MapData.mat','MAX_X','MAX_Y','MAX_Z','MAP','CLOSED','Final_Data','Display_Data','Threaten_Weather','solar3dim');


end

⛄ 运行结果

⛄ 参考文献

[1] 陈洋, 张道辉, 赵新刚,等. 基于自主学习框架的无人机三维路径规划[C]// 中国自动化大会暨钱学森诞辰一百周年及中国自动化学会五十周年会庆. 中国自动化学会, 2011.

[2] 李波. 基于分层强化学习的多agent路径规划与编队方法研究[D]. 河南师范大学, 2016.

[3] 李东华, 江驹, 姜长生. 多智能体强化学习飞行路径规划算法[J]. 电光与控制, 2009, 16(10):5.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
192 85
|
2月前
|
算法 图形学
三维球体空间中光线反射模拟与三维点云提取matlab仿真
本项目使用MATLAB2022A模拟三维椭球体内光线反射并提取三维点云。通过设置椭球模型作为墙壁,根据几何光学原理计算光线在曲面上的反射路径,记录每次反射点坐标,生成三维点云图。核心代码实现多次反射的循环计算与绘图,并展示反射点的位置变化及其平滑处理结果。最终,通过光线追踪技术模拟真实场景中的光线行为,生成精确的三维点云数据,适用于计算机图形学和光学仿真领域。
138 27
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
56 12
|
4月前
|
存储 数据可视化 数据挖掘
使用Matlab绘制简单的二维与三维图形
【10月更文挑战第3天】本文详细介绍了如何在 Matlab 中绘制简单的二维和三维图形,包括曲线图、柱状图、散点图、网格图、表面图、等高线图、多边形填充图、切片图及矢量场等。文章提供了丰富的代码示例,如使用 `plot`、`bar`、`scatter`、`plot3`、`mesh`、`surf`、`contour` 等函数绘制不同类型图形的方法,并介绍了 `rotate3d`、`comet3` 和 `movie` 等工具实现图形的交互和动画效果。通过这些示例,读者可以轻松掌握 Matlab 的绘图技巧,并应用于数据可视化和分析中。
187 6
|
3月前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
150 0
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
213 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于强化学习的路径规划matlab仿真,对比QLearning和SARSA
本仿真展示了使用MATLAB 2022a实现的Q-Learning路径规划算法。通过与环境交互,智能体学习从起点至终点的最佳路径。Q-Learning采用off-policy学习方式,直接学习最优策略;而SARSA为on-policy方法,依据当前策略选择动作。仿真结果显示智能体逐步优化路径并减少步数,最终实现高效导航。核心代码片段实现了Q表更新、奖励计算及路径可视化等功能。
135 0
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章