【无人机三维路径规划】基于强化学习实现复杂地形无人机三维路径规划附matlab代码

简介: 【无人机三维路径规划】基于强化学习实现复杂地形无人机三维路径规划附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在搜救领域中,透过程序完成半自主或自主飞行控制,无人机能够协助救难人员更好地完成救援任务.搜救任务中涉及到多个目标间的搜索,相比于单目标的搜索问题,需要更复杂的算法或是奖励重塑形式,才能改进其稀疏奖励的问题.此外,搜救任务比起一般的强化学习问题,更讲究时效性.如何利用搜救的先验知识对算法进行改进,从而提高完成任务的效率和训练时间,是机器学习应用的研究重点.

⛄ 部分代码

function  MakeData()

%%%%%%%%制作地形数据

load ('TerrainData.mat');

MAX_X = 100;

MAX_Y = 100;

MAX_Z = 50;

Cut_Data = Final_Data(301:400,101:200);

mesh(double(Cut_Data));

MAX_Final_Data = max(max(Cut_Data));

MIN_Final_Data = min(min(Cut_Data));

for i=1:100

   for j=1:100

       New_Data(i,j) = ceil((Cut_Data(i,j)-MIN_Final_Data)/100); % 朝正无穷大四舍五入,减去最小值可以减少搜索结点

       Display_Data(i,j) = (Cut_Data(i,j)-MIN_Final_Data)/100;

   end

end

%%%%%%%%% Map初始化

% 可以走的区域为2,目标为0,障碍为-1

MAP=2*(ones(MAX_X,MAX_Y,MAX_Z));

for i=1:MAX_X

   for j=1:MAX_Y

       Z_UpData = New_Data(i,j);

       for z = 1:Z_UpData

           MAP(i,j,z) = -1;

       end

   end

end

%%%%%%%%输入异常气象区域信息

CLOSED = [];

k = 1;

c2 = size(CLOSED,1);

for i_z=1:50

   for i_x=1:100

       for i_y=1:100

           flag = 1;

           Length = (i_x-60)^2 + (i_y-70)^2;            

           for c1=1:c2

               if (i_x == CLOSED(c1,1) && i_y == CLOSED(c1,2) && i_z == CLOSED(c1,3))

                   flag = 0;

               end

           end

           if Length <= 56.25 && flag == 1

               Threaten_Weather(k,1)=i_x;

               Threaten_Weather(k,2)=i_y;

               Threaten_Weather(k,3)=i_z;

               k = k+1;

           end

       end

   end

end

%%%%%%%%%%生成太阳辐射数据

solar2dim = 3.491 + (4.491-3.491) * rand(100,100);

surf(solar2dim(1:100,1:100)','linestyle','none');

xlabel('X Points','FontWeight', 'bold');

ylabel('Y Points','FontWeight', 'bold');

title('kwh/kwp/day','FontWeight', 'bold');

set(gca,'fontsize',9,'fontname','Times New Roman');


view(0, 90);

solar2dim = solar2dim./4.491;

solar3dim = [];

for i = 1:50

   solar3dim(:, :, i) = solar2dim;

end

save('MapData.mat','MAX_X','MAX_Y','MAX_Z','MAP','CLOSED','Final_Data','Display_Data','Threaten_Weather','solar3dim');


end

⛄ 运行结果

⛄ 参考文献

[1] 陈洋, 张道辉, 赵新刚,等. 基于自主学习框架的无人机三维路径规划[C]// 中国自动化大会暨钱学森诞辰一百周年及中国自动化学会五十周年会庆. 中国自动化学会, 2011.

[2] 李波. 基于分层强化学习的多agent路径规划与编队方法研究[D]. 河南师范大学, 2016.

[3] 李东华, 江驹, 姜长生. 多智能体强化学习飞行路径规划算法[J]. 电光与控制, 2009, 16(10):5.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
13天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
33 0
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
67 0
|
1月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于Qlearning强化学习的小车弧线轨迹行驶控制matlab仿真
**MATLAB 2022a仿真实现Q-learning控制小车弧线行驶,展示学习过程及奖励变化。Q-learning是无模型强化学习算法,学习最优策略以稳定行驶。环境建模为二维平面,状态包括位置、朝向,动作涵盖转向、速度。奖励函数鼓励保持在轨迹上,用贝尔曼方程更新Q表。MATLAB代码动态显示轨迹及奖励随训练改善。**
83 15
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于强化学习的路径规划matlab仿真,对比QLearning和SARSA
本仿真展示了使用MATLAB 2022a实现的Q-Learning路径规划算法。通过与环境交互,智能体学习从起点至终点的最佳路径。Q-Learning采用off-policy学习方式,直接学习最优策略;而SARSA为on-policy方法,依据当前策略选择动作。仿真结果显示智能体逐步优化路径并减少步数,最终实现高效导航。核心代码片段实现了Q表更新、奖励计算及路径可视化等功能。
75 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)