基于强化学习的路径规划matlab仿真,对比QLearning和SARSA

简介: 本仿真展示了使用MATLAB 2022a实现的Q-Learning路径规划算法。通过与环境交互,智能体学习从起点至终点的最佳路径。Q-Learning采用off-policy学习方式,直接学习最优策略;而SARSA为on-policy方法,依据当前策略选择动作。仿真结果显示智能体逐步优化路径并减少步数,最终实现高效导航。核心代码片段实现了Q表更新、奖励计算及路径可视化等功能。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.jpeg
2.jpeg
3.jpeg

2.算法涉及理论知识概要
强化学习(Reinforcement Learning, RL)是一种机器学习方法,它使代理(agent)通过与环境互动,学习采取何种行动以最大化累积奖励。在路径规划问题中,强化学习被用于自动探索环境,找到从起点到终点的最佳路径。其中,QLearning和SARSA是两种经典的价值迭代方法。

2.1 QLearning
QLearning是一种off-policy学习方法,意味着它学习的是一个最优策略,而不是仅仅基于所执行的策略。它通过更新动作价值函数Q(s,a)来实现这一点,公式如下:

d3ba62eb33a2cf594df0ad42bb81bb78_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   QLearning的特点在于其更新规则不依赖于当前策略,而是基于最佳动作进行更新,这使得它能够直接学习最优策略,即使执行的策略与学习策略不同。

2.2 SARSA
相比之下,SARSA(State-Action-Reward-State-Action)是一种on-policy学习方法,它根据当前策略来选择下一个动作,并据此更新动作价值函数。SARSA的更新公式如下:

51bf59458c415d233971f916d78bacdd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.3 对比分析
策略差异:QLearning是off-policy,它学习的是最优策略,而实际执行的动作可以来自任意策略,这使得它更灵活,能够探索更广阔的行为空间;SARSA则是on-policy,更新规则依赖于执行的策略,学习与行为策略一致,这要求算法必须按照正在学习的策略来行动,有时限制了探索范围。

更新规则:QLearning在更新时考虑的是下一个状态st+1​下所有动作的最大期望回报,这使得它在探索未知环境时更加积极,但也可能导致过估计;SARSA则只考虑下一个状态下按当前策略选择的动作的回报,这使得它更保守,倾向于评估当前策略下的性能。

收敛性:理论上,QLearning在无限探索且无偏的情况下可以保证收敛到最优策略,但实践中容易过估计,尤其是在状态空间较大时;SARSA由于其保守性,通常收敛性更稳定,但可能不会直接找到最优解。

适用场景:QLearning更适合于探索性要求较高、需要寻找全局最优策略的任务;而SARSA则适用于策略更新需要与执行策略一致,或对稳定性要求较高的场景。

3.MATLAB核心程序
``` % 保存每轮数据
step_save(iters) = step;
Rwd1(iters) = Rwd3;
Rwd2(iters) = Rwd3/step;
Rwd3 = 0; % 重置累积奖励

% 在到达目标后的额外步骤处理
[next, temp] = func_next(current, action, Maps,temp, Rm, Cm);
rewardNew = Rwd_stop;
if func_Overlap(next,xy1) ~= 0
    if next.row == Rm && next.col >= 2 && next.col < Cm % 悬崖情况
        rewardNew = Rwd_n;
        next = xy0; % 回到起点
    end
else
    rewardNew = Rwd_p;
end



% 再次应用Epsilon-greedy策略
randN = 0 + (rand(1) * 1);
if(randN > Lsearch)
    [~,nextAction] = max(Qtable0(next.row,next.col,:));
else
    nextAction = round(1 + (rand(1) * 3));
end

nextQ    = Qtable0(next.row,next.col,nextAction);
Qcur     = Qtable0(current.row, current.col, action);
Qtable0(current.row, current.col, action) = Qcur + Lr * (rewardNew + Gma*nextQ - Qcur);


if  iters == Miter
    temp2 = func_Episode(Qtable0,Rm,Cm,xy0,xy1,Maps,Nact);


    figure(2);
    subplot(311); 
    plot(1:iters, Rwd1, 'b');
    ylabel('每轮奖励之和')
    axis([0 iters min(Rwd1)-10 max(Rwd1+10)])

    subplot(312); 
    plot(1:iters, step_save, 'b');
    ylabel('步数');
    axis([0 iters 0 max(step_save+10)])
    xlabel('试验次数')


    subplot(313); 
    plot(1:iters, Rwd2, 'b');
    ylabel('每轮奖励平均值')
    axis([0 iters min(Rwd2)-10 max(Rwd2+10)])
    drawnow
else
    Qtable1=Qtable0;

end

iters = iters + 1; % 迭代计数器增加

end

save R2.mat
0Z_007m

```

相关文章
|
20天前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
10天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
10天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
20天前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
345 5
|
16天前
|
机器学习/深度学习 存储 算法
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
【水下机器人建模】基于QLearning自适应强化学习PID控制器在AUV中的应用研究(Matlab代码实现)
195 0
|
16天前
|
机器学习/深度学习 边缘计算 算法
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
102 0
|
21天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
21天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
138 14
|
16天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
16天前
|
机器学习/深度学习 算法 安全
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)

热门文章

最新文章