m基于AlexNet神经网络和GEI步态能量图的步态识别算法MATLAB仿真

简介: m基于AlexNet神经网络和GEI步态能量图的步态识别算法MATLAB仿真

1.算法描述

    AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网络被提出,比如优秀的vgg,GoogLeNet。 这对于传统的机器学习分类算法而言,已经相当的出色。Alexnet网络模型于2012年提出。它具有更高维度的特征提取效果和更深层次的网络结构。第一次,在训练过程中使用了退出机制来防止过度配合。其激活功能使用relu功能并支持GPU训练。Alexnet在更深更广的网络中使用CNN,其效果分类精度更高。Alexnet使用ReLU代替sigmoid,这可以更快地训练,并解决更深网络中的梯度消失问题。Alexnet使用最大池化层来避免平均池化层的模糊性影响,并且步长小于池化核心的步长。这样,池化层输出重叠,从而提高了特征的丰富性。alexnet的网络结构如下:

454c40f6eef312aa0e62df274d72c6b3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    通常,alexnet网络模型由五个卷层和三个全连接层组成。其中,全连接层的输出可以映射1000个分类标签。Alexnet具有大量的模型参数和神经元。模型参数为60m,神经元数为650k。

    输入图像为224*224*3。首先,使用96个11*11*3的卷积来进行图像卷积运算,并获得55*55*96的卷积层。然后,在响应归一化和最大池化之后,使用256个5*5*48的卷积来获得第二卷积层,并获得两个27*27*128的卷积层。在第三卷中,使用384个3*3*256的卷积核来获得13*13*192*2个卷积层。在第四卷中,使用384个3*3*192的卷积核来获得13*13*192*2的卷积层。在第五卷中,使用256个3*3*192的卷积核来获得13*13*128*2的卷积层。

    AlexNet中包含了几个比较新的技术点,也首次在CNN中成功应用了ReLU、Dropout和LRN等Trick。同时AlexNet也使用了GPU进行运算加速。

AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中。AlexNet主要使用到的新技术点如下:
(1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。
(2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。
(3)在CNN中使用重叠的最大池化。此前CNN中普遍使用平均池化,AlexNet全部使用最大池化,避免平均池化的模糊化效果。并且AlexNet中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
(4)提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。

    步态识别是一种新兴的生物特征识别技术,旨在通过人们走路的姿态进行身份识别,与其他的生物识别技术相比,步态识别具有非接触远距离和不容易伪装的优点。在智能视频监控领域,比图像识别更具优势。步态是指人们行走时的方式,这是一种复杂的行为特征。罪犯或许会给自己化装,不让自己身上的哪怕一根毛发掉在作案现场,但有样东西他们是很难控制的,这就是走路的姿势。英国南安普敦大学电子与计算机系的马克·尼克松教授的研究显示,人人都有截然不同的走路姿势,因为人们在肌肉的力量、肌腱和骨骼长度、骨骼密度、视觉的灵敏程度、协调能力、经历、体重、重心、肌肉或骨骼受损的程度、生理条件以及个人走路的“风格”上都存在细微差异。对一个人来说,要伪装走路姿势非常困难,不管罪犯是否带着面具自然地走向银行出纳员还是从犯罪现场逃跑,他们的步态就可以让他们露出马脚。

   人类自身很善于进行步态识别,在一定距离之外都有经验能够根据人的步态辨别出熟悉的人。步态识别的输入是一段行走的视频图像序列,因此其数据采集与面像识别类似,具有非侵犯性和可接受性。但是,由于序列图像的数据量较大,因此步态识别的计算复杂性比较高,处理起来也比较困难。尽管生物力学中对于步态进行了大量的研究工作,基于步态的身份鉴别的研究工作却是刚刚开始。步态识别主要提取的特征是人体每个关节的运动。到目前为止,还没有商业化的基于步态的身份鉴别系统。

2.仿真效果预览
matlab2022a仿真结果如下:

   与其他生物识别相比,步态识别具有许多优点,如远距离、非接触等。为了获得良好的识别效果,虹膜识别需要目标在30厘米以内;人脸识别需要目标在3米以内;步态识别需要目标远达50m。不同的体型、头部形状、肌肉骨骼特征、运动神经敏感性、行走姿势等特征决定了步态具有更好的辨别能力。通过复杂的算法设计和海量数据训练,机器可以更好地识别这些细节。首先基于CASIA A数据库来模拟算法的性能,然后基于真实场景来模拟算法性能。CASIA A数据库是2005年1月在室内收集的最大步态数据集。视频大小为320×240,帧数为25fps。数据集中有20名行人。每个人收集了12个序列,包括4个0度序列、4个45度序列和4个90度序   列。因此,序列的总数为240。图4.1显示了CASIA A中的部分步态数据。

93bd49cbf0a680715fc72cc71e26f070_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
b892c7c4e59e305f3e83356f14ed3ed9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3d5c9b013e641dc6239cd425e0363101_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

CNT  = 0;
for ii = 1:length(I1_0)-1
    if isempty(I1_0{ii})==0
        tmps0 = double(imresize(I1_0{ii},[RR,CC]));
        GEI   = GEI+tmps0;
        CNT   = CNT+ 1;
    end
end
GEI = GEI/CNT;%得到能量
GEI2(:,:,1) = GEI;
GEI2(:,:,2) = GEI;
GEI2(:,:,3) = GEI;
相关文章
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
9天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
7天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
17小时前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
7天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。