机载 ARAIM 算法测试技术研究附matlab代码

简介: 机载 ARAIM 算法测试技术研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm is used to improve GNSS service quality in aviation applications. Previous researches mostly focus on the MATLAB simulation of the algorithm. This research is about the ARAIM algorithm test based on the real flight data. An airborne ARAIM algorithm testing technology based on UAV platform is established to verify the feasibility of the airborne ARAIM algorithm. The UAV platform is built to carry the receiver and the airborne computer. The real-time airborne software is based on the ARAIM algorithm and the raw measurements obtained from ComNav M300-G Mini GNSS receiver. The results show that the ARAIM test platform can accommodate test of the airborne ARAIM algorithm in various scenarios and the usability of BDS+GPS airborne ARAIM algorithm is verified in the test.

⛄ 部分代码


%MAIN_ARAIM_MAAST runs maast for ARAIM.

% all settings are edited in this file (RAIM ISM parameters, the user grid, the constellation

%configuration, and the receiver settings)

%allows for repeatable and recorded runs

%The parameters are described in: Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., Spletter, A., Kropp, V.,

%"Baseline Advanced RAIM User Algorithm and Possible Improvements," IEEE Transactions on Aerospace and Electronic Systems,

%Volume 51,  No. 1, January 2015.


%In the position optimization option, the code attempts to lower the

%protection levels by applying the method described in:

% Blanch, J., Walter, T., Enge, P., Kropp, V.,擜 Simple Position Estimator that Improves Advanced RAIM Performance,�

% IEEE Transactions on Aerospace and Electronic Systems Vol. 51, No. 3, July 2015.

%Some of the constants might be set to a different value than in the paper


%The protection levels are computed following the algorithm described in

%the ARAIM Airborne Algorithm Algorithm Description Document v3.0


% global TRUTH_FLAG

%

% global BRAZPARAMS RTR_FLAG IPP_SPREAD_FLAG


global ARAIM_URA_GPS ARAIM_URA_GLO ARAIM_URA_GAL ARAIM_URA_BDU ...

   ARAIM_BIAS_GPS ARAIM_BIAS_GLO ARAIM_BIAS_GAL ARAIM_BIAS_BDU


global ARAIM_URE_GPS ARAIM_URE_GLO ARAIM_URE_GAL ARAIM_URE_BDU ...

   ARAIM_BIAS_CONT_GPS ARAIM_BIAS_CONT_GLO ARAIM_BIAS_CONT_GAL ARAIM_BIAS_CONT_BDU


global ARAIM_PSAT_GPS ARAIM_PSAT_GAL ARAIM_PSAT_GLO ARAIM_PSAT_BDU ...

   ARAIM_PCONST_GPS ARAIM_PCONST_GAL ARAIM_PCONST_GLO ARAIM_PCONST_BDU


global PHMI_VERT PHMI_HOR P_THRES PFA_VERT PFA_HOR P_EMT PL_TOL FC_THRES ...

   PL0_FDE FDE_FLAG FDE_WF_FLAG


%global P_EMT_NEW

global SIG_ACC_MAX_VERT

global SIG_ACC_MAX_HOR1 SIG_ACC_MAX_HOR2

global VPLT HPLT EMTT ATTEMPT_OPT


global ARAIM_USRMASK_GPS ARAIM_USRMASK_GLO ARAIM_USRMASK_GAL ARAIM_USRMASK_BDU

global ARAIM_SIN_USRMASK_GPS ARAIM_SIN_USRMASK_GLO ARAIM_SIN_USRMASK_GAL

global ARAIM_SIN_USRMASK_BDU PFAULT_EXC_THRES





%Integrity Support Message parameters

ARAIM_URA_GPS = 1;

ARAIM_URA_GAL = 1;

ARAIM_URA_GLO = 1;

ARAIM_URA_BDU = Inf;


ARAIM_BIAS_GPS = .75;

ARAIM_BIAS_GAL = .75;

ARAIM_BIAS_GLO = .75;

ARAIM_BIAS_BDU = Inf;


ARAIM_URE_GPS = 2/3*ARAIM_URA_GPS;

ARAIM_URE_GAL = 2/3*ARAIM_URA_GAL;

ARAIM_URE_GLO = 2/3*ARAIM_URA_GLO;

ARAIM_URE_BDU = Inf;


ARAIM_BIAS_CONT_GPS = 0;

ARAIM_BIAS_CONT_GAL = 0;

ARAIM_BIAS_CONT_GLO = 0;

ARAIM_BIAS_CONT_BDU = 0;


ARAIM_PSAT_GPS = 1e-5;

ARAIM_PSAT_GAL = 1e-5;

ARAIM_PSAT_GLO = 1e-3;

ARAIM_PSAT_BDU = 1;


ARAIM_PCONST_GPS = 1e-8; %For H-ARAIM, PCONST_GPS can be set to 10^-8

ARAIM_PCONST_GAL = 1e-4;

ARAIM_PCONST_GLO = 1e-4;

ARAIM_PCONST_BDU = 1;


FDE_FLAG = 0; %Computes worst case PLs,EMT, sig_acc under a fault or outage scenario. In this version, only single outages and faults are taken into account for the continuity assessment.

%Probability of failed exclusion is set at PFA


FDE_WF_FLAG = 0;


PL0_FDE = 0; %When FDE_FLAG is off,and this flag is on the PLS are computed assuming that some of the integrity budget is reserved for the exclusion function



%Mask angles


ARAIM_USRMASK_GPS = 5;

ARAIM_USRMASK_GLO = 5;

ARAIM_USRMASK_GAL = 5;

ARAIM_USRMASK_BDU = 5;


ARAIM_SIN_USRMASK_GPS = sin(ARAIM_USRMASK_GPS*pi/180);

ARAIM_SIN_USRMASK_GLO = sin(ARAIM_USRMASK_GLO*pi/180);

ARAIM_SIN_USRMASK_GAL = sin(ARAIM_USRMASK_GAL*pi/180);

ARAIM_SIN_USRMASK_BDU = sin(ARAIM_USRMASK_BDU*pi/180);


%ARAIM receiver parameters


%Vertical-ARAIM

PHMI_VERT = 9.8e-8;

P_THRES = 6e-8;

PFA_VERT = 3.9e-6;

PFA_HOR  = 0.9e-6;

PL_TOL = 1e-2;

PHMI_HOR = 2e-9;

P_EMT = 1e-5;

FC_THRES = .01;


VPLT = 35;

HPLT = 40;

EMTT = 15;

%

SIG_ACC_MAX_VERT = 1.86;

SIG_ACC_MAX_HOR1 = 3;  %Do not set to infinite

SIG_ACC_MAX_HOR2 = 3;  %Do not set to infinite



% Horizontal-ARAIM


% PHMI_VERT = 0.1e-8;

% P_THRES = 6e-8;

% PFA_VERT = .01e-7;

% PFA_HOR  = 1e-7;

% PL_TOL = 1e-2;

% PHMI_HOR = 9.9e-8;

% P_EMT = 1e-5;

% FC_THRES = .01;

%

% %

% VPLT = Inf;

% HPLT = 185;

% EMTT = Inf;

%

% SIG_ACC_MAX_VERT = 10;

% SIG_ACC_MAX_HOR1 = 10;  %Do not set to infinite

% SIG_ACC_MAX_HOR2 = 10;  %Do not set to infinite




ATTEMPT_OPT = 1; %determines whether we attempt to optimize the position estimation:

% ATTEMPT_OPT = 0: no optimization

% ATTEMPT_OPT = 1: 1-dimensional optimization




%%%%%%%%

% SV Menu

%WGC scenarios


%svfile = {'almmops-1.txt','almanac Galileo 24-1 Week 703.alm.txt'};

%svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt','almglonass.txt'};

svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt'};

%svfile ={'almgps24+3.txt','almanac Galileo 24 + 3 Spare Week 703.alm.txt'};

%svfile ={'almgps24+3.txt','almanac Galileo 24 + 8 Spare Week 703.alm.txt'};

%svfile = {'almmops-1.txt'};

%svfile = {'almmops.txt'};

%svfile ={'almgps24+3.txt'};

%svfile = {'almmops_22.txt'};


%Other scenarios


%svfile = {'current.txt'};

%svfile =  {'almmops.txt','almgalileo.txt','almglonass.txt'};

% svfile =  {'almmops.txt','almgalileo24.txt'};


init_const;      % global physical and gps constants

init_col_labels; % column indices

init_mops;       % MOPS constants


close all;



%User signals:

% dual_freq = 0 : L1 only

% dual_freq = 1 : L1-L5

% dual_freq = 2 : L5 only



dual_freq = 1;



% USER CNMP Menu


%select AAD-B model

usrcnmpfun = 'af_cnmp_mops';

init_cnmp_mops;


%select AAD-A model

%      usrcnmpfun = 'af_cnmpaad';

%      init_aada;


%select AAD-B model

%      usrcnmpfun = 'af_cnmpaad';

%      init_aadb;





% USER Menu

%select the world as the user area

usrpolyfile = 'usrworld.dat';

usrlatstep = 10;

usrlonstep = 10;


%Start time for simulation

TStart = 0;


%End time for simulation

%TEnd = 862200;

TEnd = 86400;


% Size of time step

TStep = 300;


%select CONUS as the user area

%      usrpolyfile = 'usrconus.dat';


%select Alaska as the user area

%      usrpolyfile = 'usralaska.dat';


%select Canada as the user area

%      usrpolyfile = 'usrcanada.dat';


%select Mexico as the user area

%      usrpolyfile = 'usrmexico.dat';


%select North America as the user area

%usrpolyfile = 'usrn_america.dat';


%select Europe as the user area

%      usrpolyfile = 'usreurope.dat';


%select Japan as the user area

%      usrpolyfile = 'usrmsas.dat';


%select Brazil as the user area

%      usrpolyfile = 'usrbrazil.dat';







% check if file(s) exist

i=1;

while i<=size(svfile,2)

   if iscell(svfile)

       fid=fopen(svfile{i});

   else

       fid=fopen(svfile);

       i = size(svfile,2);

   end

   if fid==-1

       fprintf('Almanac file not found.  Please try again.\n');

       return;

   else

       fclose(fid);

   end

   i=i+1;

end






% Mode / Alert limit


%choose PA mode vs NPA

pa_mode = 1;


%choose VAL, HAL, EMT Threshold, and sigma accuracy threshold

vhal = [35, 40, 15, 1.87];

%vhal = [Inf, 1668];


% OUTPUT Menu


%initialize histograms

%init_hist;




% turn on or off output options

%1: Availability  2: V/HPL  3: EMT  4: sig_acc


outputs = [1 1 1 1];


% Assign percentage

percent = 0.995; % 1 = 100%


% Coverage values computed for users with |lat|<lamax

latmax = 90/90*pi/2;



% WRS Menu (not used in ARAIM)


%wrsfile = 'wrs_foc.dat';




% RUN Simulation


svmrun(usrcnmpfun,usrpolyfile, svfile, TStart, TEnd, ...

   TStep, usrlatstep, usrlonstep, outputs, percent, vhal, ...

   pa_mode, dual_freq, latmax);

⛄ 运行结果

⛄ 参考文献

[1]  Blanch J ,  Phelts R E ,  Chen Y H , et al. Initial Results of a Multi-Constellation ARAIM Airborne Prototype[C]// 2017 International Technical Meeting of The Institute of Navigation. 2017.

[2]  Wang S ,  Zhan X ,  Zhang X . Research on airborne ARAIM algorithm testing technology based on UAV platform[J]. Measurement & Control Technology, 2018.

[3] 王士壮战兴群张欣梅浩. 基于UAV的ARAIM测试技术研究[J]. 测控技术, 2018, 37(5):24-28.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
2天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
2天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
11 1
|
3天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
3天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
20天前
|
网络协议 安全 测试技术
性能工具之emqtt-bench BenchMark 测试示例
【4月更文挑战第19天】在前面两篇文章中介绍了emqtt-bench工具和MQTT的入门压测,本文示例 emqtt_bench 对 MQTT Broker 做 Beachmark 测试,让大家对 MQTT消息中间 BenchMark 测试有个整体了解,方便平常在压测工作查阅。
114 7
性能工具之emqtt-bench BenchMark 测试示例
|
1月前
|
测试技术 C语言
网站压力测试工具Siege图文详解
网站压力测试工具Siege图文详解
29 0
|
14天前
|
机器学习/深度学习 数据采集 人工智能
【专栏】AI在软件测试中的应用,如自动执行测试用例、识别缺陷和优化测试设计
【4月更文挑战第27天】本文探讨了AI在软件测试中的应用,如自动执行测试用例、识别缺陷和优化测试设计。AI辅助工具利用机器学习、自然语言处理和图像识别提高效率,但面临数据质量、模型解释性、维护更新及安全性挑战。未来,AI将更注重用户体验,提升透明度,并在保护隐私的同时,通过联邦学习等技术共享知识。AI在软件测试领域的前景广阔,但需解决现有挑战。
|
3天前
|
SQL 测试技术 网络安全
Python之SQLMap:自动SQL注入和渗透测试工具示例详解
Python之SQLMap:自动SQL注入和渗透测试工具示例详解
13 0

热门文章

最新文章