✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm is used to improve GNSS service quality in aviation applications. Previous researches mostly focus on the MATLAB simulation of the algorithm. This research is about the ARAIM algorithm test based on the real flight data. An airborne ARAIM algorithm testing technology based on UAV platform is established to verify the feasibility of the airborne ARAIM algorithm. The UAV platform is built to carry the receiver and the airborne computer. The real-time airborne software is based on the ARAIM algorithm and the raw measurements obtained from ComNav M300-G Mini GNSS receiver. The results show that the ARAIM test platform can accommodate test of the airborne ARAIM algorithm in various scenarios and the usability of BDS+GPS airborne ARAIM algorithm is verified in the test.
⛄ 部分代码
%MAIN_ARAIM_MAAST runs maast for ARAIM.
% all settings are edited in this file (RAIM ISM parameters, the user grid, the constellation
%configuration, and the receiver settings)
%allows for repeatable and recorded runs
%The parameters are described in: Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., Spletter, A., Kropp, V.,
%"Baseline Advanced RAIM User Algorithm and Possible Improvements," IEEE Transactions on Aerospace and Electronic Systems,
%Volume 51, No. 1, January 2015.
%In the position optimization option, the code attempts to lower the
%protection levels by applying the method described in:
% Blanch, J., Walter, T., Enge, P., Kropp, V.,擜 Simple Position Estimator that Improves Advanced RAIM Performance,�
% IEEE Transactions on Aerospace and Electronic Systems Vol. 51, No. 3, July 2015.
%Some of the constants might be set to a different value than in the paper
%The protection levels are computed following the algorithm described in
%the ARAIM Airborne Algorithm Algorithm Description Document v3.0
% global TRUTH_FLAG
%
% global BRAZPARAMS RTR_FLAG IPP_SPREAD_FLAG
global ARAIM_URA_GPS ARAIM_URA_GLO ARAIM_URA_GAL ARAIM_URA_BDU ...
ARAIM_BIAS_GPS ARAIM_BIAS_GLO ARAIM_BIAS_GAL ARAIM_BIAS_BDU
global ARAIM_URE_GPS ARAIM_URE_GLO ARAIM_URE_GAL ARAIM_URE_BDU ...
ARAIM_BIAS_CONT_GPS ARAIM_BIAS_CONT_GLO ARAIM_BIAS_CONT_GAL ARAIM_BIAS_CONT_BDU
global ARAIM_PSAT_GPS ARAIM_PSAT_GAL ARAIM_PSAT_GLO ARAIM_PSAT_BDU ...
ARAIM_PCONST_GPS ARAIM_PCONST_GAL ARAIM_PCONST_GLO ARAIM_PCONST_BDU
global PHMI_VERT PHMI_HOR P_THRES PFA_VERT PFA_HOR P_EMT PL_TOL FC_THRES ...
PL0_FDE FDE_FLAG FDE_WF_FLAG
%global P_EMT_NEW
global SIG_ACC_MAX_VERT
global SIG_ACC_MAX_HOR1 SIG_ACC_MAX_HOR2
global VPLT HPLT EMTT ATTEMPT_OPT
global ARAIM_USRMASK_GPS ARAIM_USRMASK_GLO ARAIM_USRMASK_GAL ARAIM_USRMASK_BDU
global ARAIM_SIN_USRMASK_GPS ARAIM_SIN_USRMASK_GLO ARAIM_SIN_USRMASK_GAL
global ARAIM_SIN_USRMASK_BDU PFAULT_EXC_THRES
%Integrity Support Message parameters
ARAIM_URA_GPS = 1;
ARAIM_URA_GAL = 1;
ARAIM_URA_GLO = 1;
ARAIM_URA_BDU = Inf;
ARAIM_BIAS_GPS = .75;
ARAIM_BIAS_GAL = .75;
ARAIM_BIAS_GLO = .75;
ARAIM_BIAS_BDU = Inf;
ARAIM_URE_GPS = 2/3*ARAIM_URA_GPS;
ARAIM_URE_GAL = 2/3*ARAIM_URA_GAL;
ARAIM_URE_GLO = 2/3*ARAIM_URA_GLO;
ARAIM_URE_BDU = Inf;
ARAIM_BIAS_CONT_GPS = 0;
ARAIM_BIAS_CONT_GAL = 0;
ARAIM_BIAS_CONT_GLO = 0;
ARAIM_BIAS_CONT_BDU = 0;
ARAIM_PSAT_GPS = 1e-5;
ARAIM_PSAT_GAL = 1e-5;
ARAIM_PSAT_GLO = 1e-3;
ARAIM_PSAT_BDU = 1;
ARAIM_PCONST_GPS = 1e-8; %For H-ARAIM, PCONST_GPS can be set to 10^-8
ARAIM_PCONST_GAL = 1e-4;
ARAIM_PCONST_GLO = 1e-4;
ARAIM_PCONST_BDU = 1;
FDE_FLAG = 0; %Computes worst case PLs,EMT, sig_acc under a fault or outage scenario. In this version, only single outages and faults are taken into account for the continuity assessment.
%Probability of failed exclusion is set at PFA
FDE_WF_FLAG = 0;
PL0_FDE = 0; %When FDE_FLAG is off,and this flag is on the PLS are computed assuming that some of the integrity budget is reserved for the exclusion function
%Mask angles
ARAIM_USRMASK_GPS = 5;
ARAIM_USRMASK_GLO = 5;
ARAIM_USRMASK_GAL = 5;
ARAIM_USRMASK_BDU = 5;
ARAIM_SIN_USRMASK_GPS = sin(ARAIM_USRMASK_GPS*pi/180);
ARAIM_SIN_USRMASK_GLO = sin(ARAIM_USRMASK_GLO*pi/180);
ARAIM_SIN_USRMASK_GAL = sin(ARAIM_USRMASK_GAL*pi/180);
ARAIM_SIN_USRMASK_BDU = sin(ARAIM_USRMASK_BDU*pi/180);
%ARAIM receiver parameters
%Vertical-ARAIM
PHMI_VERT = 9.8e-8;
P_THRES = 6e-8;
PFA_VERT = 3.9e-6;
PFA_HOR = 0.9e-6;
PL_TOL = 1e-2;
PHMI_HOR = 2e-9;
P_EMT = 1e-5;
FC_THRES = .01;
VPLT = 35;
HPLT = 40;
EMTT = 15;
%
SIG_ACC_MAX_VERT = 1.86;
SIG_ACC_MAX_HOR1 = 3; %Do not set to infinite
SIG_ACC_MAX_HOR2 = 3; %Do not set to infinite
% Horizontal-ARAIM
% PHMI_VERT = 0.1e-8;
% P_THRES = 6e-8;
% PFA_VERT = .01e-7;
% PFA_HOR = 1e-7;
% PL_TOL = 1e-2;
% PHMI_HOR = 9.9e-8;
% P_EMT = 1e-5;
% FC_THRES = .01;
%
% %
% VPLT = Inf;
% HPLT = 185;
% EMTT = Inf;
%
% SIG_ACC_MAX_VERT = 10;
% SIG_ACC_MAX_HOR1 = 10; %Do not set to infinite
% SIG_ACC_MAX_HOR2 = 10; %Do not set to infinite
ATTEMPT_OPT = 1; %determines whether we attempt to optimize the position estimation:
% ATTEMPT_OPT = 0: no optimization
% ATTEMPT_OPT = 1: 1-dimensional optimization
%%%%%%%%
% SV Menu
%WGC scenarios
%svfile = {'almmops-1.txt','almanac Galileo 24-1 Week 703.alm.txt'};
%svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt','almglonass.txt'};
svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt'};
%svfile ={'almgps24+3.txt','almanac Galileo 24 + 3 Spare Week 703.alm.txt'};
%svfile ={'almgps24+3.txt','almanac Galileo 24 + 8 Spare Week 703.alm.txt'};
%svfile = {'almmops-1.txt'};
%svfile = {'almmops.txt'};
%svfile ={'almgps24+3.txt'};
%svfile = {'almmops_22.txt'};
%Other scenarios
%svfile = {'current.txt'};
%svfile = {'almmops.txt','almgalileo.txt','almglonass.txt'};
% svfile = {'almmops.txt','almgalileo24.txt'};
init_const; % global physical and gps constants
init_col_labels; % column indices
init_mops; % MOPS constants
close all;
%User signals:
% dual_freq = 0 : L1 only
% dual_freq = 1 : L1-L5
% dual_freq = 2 : L5 only
dual_freq = 1;
% USER CNMP Menu
%select AAD-B model
usrcnmpfun = 'af_cnmp_mops';
init_cnmp_mops;
%select AAD-A model
% usrcnmpfun = 'af_cnmpaad';
% init_aada;
%select AAD-B model
% usrcnmpfun = 'af_cnmpaad';
% init_aadb;
% USER Menu
%select the world as the user area
usrpolyfile = 'usrworld.dat';
usrlatstep = 10;
usrlonstep = 10;
%Start time for simulation
TStart = 0;
%End time for simulation
%TEnd = 862200;
TEnd = 86400;
% Size of time step
TStep = 300;
%select CONUS as the user area
% usrpolyfile = 'usrconus.dat';
%select Alaska as the user area
% usrpolyfile = 'usralaska.dat';
%select Canada as the user area
% usrpolyfile = 'usrcanada.dat';
%select Mexico as the user area
% usrpolyfile = 'usrmexico.dat';
%select North America as the user area
%usrpolyfile = 'usrn_america.dat';
%select Europe as the user area
% usrpolyfile = 'usreurope.dat';
%select Japan as the user area
% usrpolyfile = 'usrmsas.dat';
%select Brazil as the user area
% usrpolyfile = 'usrbrazil.dat';
% check if file(s) exist
i=1;
while i<=size(svfile,2)
if iscell(svfile)
fid=fopen(svfile{i});
else
fid=fopen(svfile);
i = size(svfile,2);
end
if fid==-1
fprintf('Almanac file not found. Please try again.\n');
return;
else
fclose(fid);
end
i=i+1;
end
% Mode / Alert limit
%choose PA mode vs NPA
pa_mode = 1;
%choose VAL, HAL, EMT Threshold, and sigma accuracy threshold
vhal = [35, 40, 15, 1.87];
%vhal = [Inf, 1668];
% OUTPUT Menu
%initialize histograms
%init_hist;
% turn on or off output options
%1: Availability 2: V/HPL 3: EMT 4: sig_acc
outputs = [1 1 1 1];
% Assign percentage
percent = 0.995; % 1 = 100%
% Coverage values computed for users with |lat|<lamax
latmax = 90/90*pi/2;
% WRS Menu (not used in ARAIM)
%wrsfile = 'wrs_foc.dat';
% RUN Simulation
svmrun(usrcnmpfun,usrpolyfile, svfile, TStart, TEnd, ...
TStep, usrlatstep, usrlonstep, outputs, percent, vhal, ...
pa_mode, dual_freq, latmax);
⛄ 运行结果
⛄ 参考文献
[1] Blanch J , Phelts R E , Chen Y H , et al. Initial Results of a Multi-Constellation ARAIM Airborne Prototype[C]// 2017 International Technical Meeting of The Institute of Navigation. 2017.
[2] Wang S , Zhan X , Zhang X . Research on airborne ARAIM algorithm testing technology based on UAV platform[J]. Measurement & Control Technology, 2018.
[3] 王士壮战兴群张欣梅浩. 基于UAV的ARAIM测试技术研究[J]. 测控技术, 2018, 37(5):24-28.