机载 ARAIM 算法测试技术研究附matlab代码

简介: 机载 ARAIM 算法测试技术研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm is used to improve GNSS service quality in aviation applications. Previous researches mostly focus on the MATLAB simulation of the algorithm. This research is about the ARAIM algorithm test based on the real flight data. An airborne ARAIM algorithm testing technology based on UAV platform is established to verify the feasibility of the airborne ARAIM algorithm. The UAV platform is built to carry the receiver and the airborne computer. The real-time airborne software is based on the ARAIM algorithm and the raw measurements obtained from ComNav M300-G Mini GNSS receiver. The results show that the ARAIM test platform can accommodate test of the airborne ARAIM algorithm in various scenarios and the usability of BDS+GPS airborne ARAIM algorithm is verified in the test.

⛄ 部分代码


%MAIN_ARAIM_MAAST runs maast for ARAIM.

% all settings are edited in this file (RAIM ISM parameters, the user grid, the constellation

%configuration, and the receiver settings)

%allows for repeatable and recorded runs

%The parameters are described in: Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., Spletter, A., Kropp, V.,

%"Baseline Advanced RAIM User Algorithm and Possible Improvements," IEEE Transactions on Aerospace and Electronic Systems,

%Volume 51,  No. 1, January 2015.


%In the position optimization option, the code attempts to lower the

%protection levels by applying the method described in:

% Blanch, J., Walter, T., Enge, P., Kropp, V.,擜 Simple Position Estimator that Improves Advanced RAIM Performance,�

% IEEE Transactions on Aerospace and Electronic Systems Vol. 51, No. 3, July 2015.

%Some of the constants might be set to a different value than in the paper


%The protection levels are computed following the algorithm described in

%the ARAIM Airborne Algorithm Algorithm Description Document v3.0


% global TRUTH_FLAG

%

% global BRAZPARAMS RTR_FLAG IPP_SPREAD_FLAG


global ARAIM_URA_GPS ARAIM_URA_GLO ARAIM_URA_GAL ARAIM_URA_BDU ...

   ARAIM_BIAS_GPS ARAIM_BIAS_GLO ARAIM_BIAS_GAL ARAIM_BIAS_BDU


global ARAIM_URE_GPS ARAIM_URE_GLO ARAIM_URE_GAL ARAIM_URE_BDU ...

   ARAIM_BIAS_CONT_GPS ARAIM_BIAS_CONT_GLO ARAIM_BIAS_CONT_GAL ARAIM_BIAS_CONT_BDU


global ARAIM_PSAT_GPS ARAIM_PSAT_GAL ARAIM_PSAT_GLO ARAIM_PSAT_BDU ...

   ARAIM_PCONST_GPS ARAIM_PCONST_GAL ARAIM_PCONST_GLO ARAIM_PCONST_BDU


global PHMI_VERT PHMI_HOR P_THRES PFA_VERT PFA_HOR P_EMT PL_TOL FC_THRES ...

   PL0_FDE FDE_FLAG FDE_WF_FLAG


%global P_EMT_NEW

global SIG_ACC_MAX_VERT

global SIG_ACC_MAX_HOR1 SIG_ACC_MAX_HOR2

global VPLT HPLT EMTT ATTEMPT_OPT


global ARAIM_USRMASK_GPS ARAIM_USRMASK_GLO ARAIM_USRMASK_GAL ARAIM_USRMASK_BDU

global ARAIM_SIN_USRMASK_GPS ARAIM_SIN_USRMASK_GLO ARAIM_SIN_USRMASK_GAL

global ARAIM_SIN_USRMASK_BDU PFAULT_EXC_THRES





%Integrity Support Message parameters

ARAIM_URA_GPS = 1;

ARAIM_URA_GAL = 1;

ARAIM_URA_GLO = 1;

ARAIM_URA_BDU = Inf;


ARAIM_BIAS_GPS = .75;

ARAIM_BIAS_GAL = .75;

ARAIM_BIAS_GLO = .75;

ARAIM_BIAS_BDU = Inf;


ARAIM_URE_GPS = 2/3*ARAIM_URA_GPS;

ARAIM_URE_GAL = 2/3*ARAIM_URA_GAL;

ARAIM_URE_GLO = 2/3*ARAIM_URA_GLO;

ARAIM_URE_BDU = Inf;


ARAIM_BIAS_CONT_GPS = 0;

ARAIM_BIAS_CONT_GAL = 0;

ARAIM_BIAS_CONT_GLO = 0;

ARAIM_BIAS_CONT_BDU = 0;


ARAIM_PSAT_GPS = 1e-5;

ARAIM_PSAT_GAL = 1e-5;

ARAIM_PSAT_GLO = 1e-3;

ARAIM_PSAT_BDU = 1;


ARAIM_PCONST_GPS = 1e-8; %For H-ARAIM, PCONST_GPS can be set to 10^-8

ARAIM_PCONST_GAL = 1e-4;

ARAIM_PCONST_GLO = 1e-4;

ARAIM_PCONST_BDU = 1;


FDE_FLAG = 0; %Computes worst case PLs,EMT, sig_acc under a fault or outage scenario. In this version, only single outages and faults are taken into account for the continuity assessment.

%Probability of failed exclusion is set at PFA


FDE_WF_FLAG = 0;


PL0_FDE = 0; %When FDE_FLAG is off,and this flag is on the PLS are computed assuming that some of the integrity budget is reserved for the exclusion function



%Mask angles


ARAIM_USRMASK_GPS = 5;

ARAIM_USRMASK_GLO = 5;

ARAIM_USRMASK_GAL = 5;

ARAIM_USRMASK_BDU = 5;


ARAIM_SIN_USRMASK_GPS = sin(ARAIM_USRMASK_GPS*pi/180);

ARAIM_SIN_USRMASK_GLO = sin(ARAIM_USRMASK_GLO*pi/180);

ARAIM_SIN_USRMASK_GAL = sin(ARAIM_USRMASK_GAL*pi/180);

ARAIM_SIN_USRMASK_BDU = sin(ARAIM_USRMASK_BDU*pi/180);


%ARAIM receiver parameters


%Vertical-ARAIM

PHMI_VERT = 9.8e-8;

P_THRES = 6e-8;

PFA_VERT = 3.9e-6;

PFA_HOR  = 0.9e-6;

PL_TOL = 1e-2;

PHMI_HOR = 2e-9;

P_EMT = 1e-5;

FC_THRES = .01;


VPLT = 35;

HPLT = 40;

EMTT = 15;

%

SIG_ACC_MAX_VERT = 1.86;

SIG_ACC_MAX_HOR1 = 3;  %Do not set to infinite

SIG_ACC_MAX_HOR2 = 3;  %Do not set to infinite



% Horizontal-ARAIM


% PHMI_VERT = 0.1e-8;

% P_THRES = 6e-8;

% PFA_VERT = .01e-7;

% PFA_HOR  = 1e-7;

% PL_TOL = 1e-2;

% PHMI_HOR = 9.9e-8;

% P_EMT = 1e-5;

% FC_THRES = .01;

%

% %

% VPLT = Inf;

% HPLT = 185;

% EMTT = Inf;

%

% SIG_ACC_MAX_VERT = 10;

% SIG_ACC_MAX_HOR1 = 10;  %Do not set to infinite

% SIG_ACC_MAX_HOR2 = 10;  %Do not set to infinite




ATTEMPT_OPT = 1; %determines whether we attempt to optimize the position estimation:

% ATTEMPT_OPT = 0: no optimization

% ATTEMPT_OPT = 1: 1-dimensional optimization




%%%%%%%%

% SV Menu

%WGC scenarios


%svfile = {'almmops-1.txt','almanac Galileo 24-1 Week 703.alm.txt'};

%svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt','almglonass.txt'};

svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt'};

%svfile ={'almgps24+3.txt','almanac Galileo 24 + 3 Spare Week 703.alm.txt'};

%svfile ={'almgps24+3.txt','almanac Galileo 24 + 8 Spare Week 703.alm.txt'};

%svfile = {'almmops-1.txt'};

%svfile = {'almmops.txt'};

%svfile ={'almgps24+3.txt'};

%svfile = {'almmops_22.txt'};


%Other scenarios


%svfile = {'current.txt'};

%svfile =  {'almmops.txt','almgalileo.txt','almglonass.txt'};

% svfile =  {'almmops.txt','almgalileo24.txt'};


init_const;      % global physical and gps constants

init_col_labels; % column indices

init_mops;       % MOPS constants


close all;



%User signals:

% dual_freq = 0 : L1 only

% dual_freq = 1 : L1-L5

% dual_freq = 2 : L5 only



dual_freq = 1;



% USER CNMP Menu


%select AAD-B model

usrcnmpfun = 'af_cnmp_mops';

init_cnmp_mops;


%select AAD-A model

%      usrcnmpfun = 'af_cnmpaad';

%      init_aada;


%select AAD-B model

%      usrcnmpfun = 'af_cnmpaad';

%      init_aadb;





% USER Menu

%select the world as the user area

usrpolyfile = 'usrworld.dat';

usrlatstep = 10;

usrlonstep = 10;


%Start time for simulation

TStart = 0;


%End time for simulation

%TEnd = 862200;

TEnd = 86400;


% Size of time step

TStep = 300;


%select CONUS as the user area

%      usrpolyfile = 'usrconus.dat';


%select Alaska as the user area

%      usrpolyfile = 'usralaska.dat';


%select Canada as the user area

%      usrpolyfile = 'usrcanada.dat';


%select Mexico as the user area

%      usrpolyfile = 'usrmexico.dat';


%select North America as the user area

%usrpolyfile = 'usrn_america.dat';


%select Europe as the user area

%      usrpolyfile = 'usreurope.dat';


%select Japan as the user area

%      usrpolyfile = 'usrmsas.dat';


%select Brazil as the user area

%      usrpolyfile = 'usrbrazil.dat';







% check if file(s) exist

i=1;

while i<=size(svfile,2)

   if iscell(svfile)

       fid=fopen(svfile{i});

   else

       fid=fopen(svfile);

       i = size(svfile,2);

   end

   if fid==-1

       fprintf('Almanac file not found.  Please try again.\n');

       return;

   else

       fclose(fid);

   end

   i=i+1;

end






% Mode / Alert limit


%choose PA mode vs NPA

pa_mode = 1;


%choose VAL, HAL, EMT Threshold, and sigma accuracy threshold

vhal = [35, 40, 15, 1.87];

%vhal = [Inf, 1668];


% OUTPUT Menu


%initialize histograms

%init_hist;




% turn on or off output options

%1: Availability  2: V/HPL  3: EMT  4: sig_acc


outputs = [1 1 1 1];


% Assign percentage

percent = 0.995; % 1 = 100%


% Coverage values computed for users with |lat|<lamax

latmax = 90/90*pi/2;



% WRS Menu (not used in ARAIM)


%wrsfile = 'wrs_foc.dat';




% RUN Simulation


svmrun(usrcnmpfun,usrpolyfile, svfile, TStart, TEnd, ...

   TStep, usrlatstep, usrlonstep, outputs, percent, vhal, ...

   pa_mode, dual_freq, latmax);

⛄ 运行结果

⛄ 参考文献

[1]  Blanch J ,  Phelts R E ,  Chen Y H , et al. Initial Results of a Multi-Constellation ARAIM Airborne Prototype[C]// 2017 International Technical Meeting of The Institute of Navigation. 2017.

[2]  Wang S ,  Zhan X ,  Zhang X . Research on airborne ARAIM algorithm testing technology based on UAV platform[J]. Measurement & Control Technology, 2018.

[3] 王士壮战兴群张欣梅浩. 基于UAV的ARAIM测试技术研究[J]. 测控技术, 2018, 37(5):24-28.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
456 0
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
234 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
264 8
|
4月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
281 0
|
4月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
164 0
|
4月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
165 0
|
4月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
250 8
|
4月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
171 8
|
4月前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
261 12
|
4月前
|
人工智能 数据可视化 网络性能优化
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
181 9

热门文章

最新文章