机载 ARAIM 算法测试技术研究附matlab代码

简介: 机载 ARAIM 算法测试技术研究附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm is used to improve GNSS service quality in aviation applications. Previous researches mostly focus on the MATLAB simulation of the algorithm. This research is about the ARAIM algorithm test based on the real flight data. An airborne ARAIM algorithm testing technology based on UAV platform is established to verify the feasibility of the airborne ARAIM algorithm. The UAV platform is built to carry the receiver and the airborne computer. The real-time airborne software is based on the ARAIM algorithm and the raw measurements obtained from ComNav M300-G Mini GNSS receiver. The results show that the ARAIM test platform can accommodate test of the airborne ARAIM algorithm in various scenarios and the usability of BDS+GPS airborne ARAIM algorithm is verified in the test.

⛄ 部分代码


%MAIN_ARAIM_MAAST runs maast for ARAIM.

% all settings are edited in this file (RAIM ISM parameters, the user grid, the constellation

%configuration, and the receiver settings)

%allows for repeatable and recorded runs

%The parameters are described in: Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B., Rippl, M., Spletter, A., Kropp, V.,

%"Baseline Advanced RAIM User Algorithm and Possible Improvements," IEEE Transactions on Aerospace and Electronic Systems,

%Volume 51,  No. 1, January 2015.


%In the position optimization option, the code attempts to lower the

%protection levels by applying the method described in:

% Blanch, J., Walter, T., Enge, P., Kropp, V.,擜 Simple Position Estimator that Improves Advanced RAIM Performance,�

% IEEE Transactions on Aerospace and Electronic Systems Vol. 51, No. 3, July 2015.

%Some of the constants might be set to a different value than in the paper


%The protection levels are computed following the algorithm described in

%the ARAIM Airborne Algorithm Algorithm Description Document v3.0


% global TRUTH_FLAG

%

% global BRAZPARAMS RTR_FLAG IPP_SPREAD_FLAG


global ARAIM_URA_GPS ARAIM_URA_GLO ARAIM_URA_GAL ARAIM_URA_BDU ...

   ARAIM_BIAS_GPS ARAIM_BIAS_GLO ARAIM_BIAS_GAL ARAIM_BIAS_BDU


global ARAIM_URE_GPS ARAIM_URE_GLO ARAIM_URE_GAL ARAIM_URE_BDU ...

   ARAIM_BIAS_CONT_GPS ARAIM_BIAS_CONT_GLO ARAIM_BIAS_CONT_GAL ARAIM_BIAS_CONT_BDU


global ARAIM_PSAT_GPS ARAIM_PSAT_GAL ARAIM_PSAT_GLO ARAIM_PSAT_BDU ...

   ARAIM_PCONST_GPS ARAIM_PCONST_GAL ARAIM_PCONST_GLO ARAIM_PCONST_BDU


global PHMI_VERT PHMI_HOR P_THRES PFA_VERT PFA_HOR P_EMT PL_TOL FC_THRES ...

   PL0_FDE FDE_FLAG FDE_WF_FLAG


%global P_EMT_NEW

global SIG_ACC_MAX_VERT

global SIG_ACC_MAX_HOR1 SIG_ACC_MAX_HOR2

global VPLT HPLT EMTT ATTEMPT_OPT


global ARAIM_USRMASK_GPS ARAIM_USRMASK_GLO ARAIM_USRMASK_GAL ARAIM_USRMASK_BDU

global ARAIM_SIN_USRMASK_GPS ARAIM_SIN_USRMASK_GLO ARAIM_SIN_USRMASK_GAL

global ARAIM_SIN_USRMASK_BDU PFAULT_EXC_THRES





%Integrity Support Message parameters

ARAIM_URA_GPS = 1;

ARAIM_URA_GAL = 1;

ARAIM_URA_GLO = 1;

ARAIM_URA_BDU = Inf;


ARAIM_BIAS_GPS = .75;

ARAIM_BIAS_GAL = .75;

ARAIM_BIAS_GLO = .75;

ARAIM_BIAS_BDU = Inf;


ARAIM_URE_GPS = 2/3*ARAIM_URA_GPS;

ARAIM_URE_GAL = 2/3*ARAIM_URA_GAL;

ARAIM_URE_GLO = 2/3*ARAIM_URA_GLO;

ARAIM_URE_BDU = Inf;


ARAIM_BIAS_CONT_GPS = 0;

ARAIM_BIAS_CONT_GAL = 0;

ARAIM_BIAS_CONT_GLO = 0;

ARAIM_BIAS_CONT_BDU = 0;


ARAIM_PSAT_GPS = 1e-5;

ARAIM_PSAT_GAL = 1e-5;

ARAIM_PSAT_GLO = 1e-3;

ARAIM_PSAT_BDU = 1;


ARAIM_PCONST_GPS = 1e-8; %For H-ARAIM, PCONST_GPS can be set to 10^-8

ARAIM_PCONST_GAL = 1e-4;

ARAIM_PCONST_GLO = 1e-4;

ARAIM_PCONST_BDU = 1;


FDE_FLAG = 0; %Computes worst case PLs,EMT, sig_acc under a fault or outage scenario. In this version, only single outages and faults are taken into account for the continuity assessment.

%Probability of failed exclusion is set at PFA


FDE_WF_FLAG = 0;


PL0_FDE = 0; %When FDE_FLAG is off,and this flag is on the PLS are computed assuming that some of the integrity budget is reserved for the exclusion function



%Mask angles


ARAIM_USRMASK_GPS = 5;

ARAIM_USRMASK_GLO = 5;

ARAIM_USRMASK_GAL = 5;

ARAIM_USRMASK_BDU = 5;


ARAIM_SIN_USRMASK_GPS = sin(ARAIM_USRMASK_GPS*pi/180);

ARAIM_SIN_USRMASK_GLO = sin(ARAIM_USRMASK_GLO*pi/180);

ARAIM_SIN_USRMASK_GAL = sin(ARAIM_USRMASK_GAL*pi/180);

ARAIM_SIN_USRMASK_BDU = sin(ARAIM_USRMASK_BDU*pi/180);


%ARAIM receiver parameters


%Vertical-ARAIM

PHMI_VERT = 9.8e-8;

P_THRES = 6e-8;

PFA_VERT = 3.9e-6;

PFA_HOR  = 0.9e-6;

PL_TOL = 1e-2;

PHMI_HOR = 2e-9;

P_EMT = 1e-5;

FC_THRES = .01;


VPLT = 35;

HPLT = 40;

EMTT = 15;

%

SIG_ACC_MAX_VERT = 1.86;

SIG_ACC_MAX_HOR1 = 3;  %Do not set to infinite

SIG_ACC_MAX_HOR2 = 3;  %Do not set to infinite



% Horizontal-ARAIM


% PHMI_VERT = 0.1e-8;

% P_THRES = 6e-8;

% PFA_VERT = .01e-7;

% PFA_HOR  = 1e-7;

% PL_TOL = 1e-2;

% PHMI_HOR = 9.9e-8;

% P_EMT = 1e-5;

% FC_THRES = .01;

%

% %

% VPLT = Inf;

% HPLT = 185;

% EMTT = Inf;

%

% SIG_ACC_MAX_VERT = 10;

% SIG_ACC_MAX_HOR1 = 10;  %Do not set to infinite

% SIG_ACC_MAX_HOR2 = 10;  %Do not set to infinite




ATTEMPT_OPT = 1; %determines whether we attempt to optimize the position estimation:

% ATTEMPT_OPT = 0: no optimization

% ATTEMPT_OPT = 1: 1-dimensional optimization




%%%%%%%%

% SV Menu

%WGC scenarios


%svfile = {'almmops-1.txt','almanac Galileo 24-1 Week 703.alm.txt'};

%svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt','almglonass.txt'};

svfile = {'almmops.txt','almanac Galileo 24 Week 703.alm.txt'};

%svfile ={'almgps24+3.txt','almanac Galileo 24 + 3 Spare Week 703.alm.txt'};

%svfile ={'almgps24+3.txt','almanac Galileo 24 + 8 Spare Week 703.alm.txt'};

%svfile = {'almmops-1.txt'};

%svfile = {'almmops.txt'};

%svfile ={'almgps24+3.txt'};

%svfile = {'almmops_22.txt'};


%Other scenarios


%svfile = {'current.txt'};

%svfile =  {'almmops.txt','almgalileo.txt','almglonass.txt'};

% svfile =  {'almmops.txt','almgalileo24.txt'};


init_const;      % global physical and gps constants

init_col_labels; % column indices

init_mops;       % MOPS constants


close all;



%User signals:

% dual_freq = 0 : L1 only

% dual_freq = 1 : L1-L5

% dual_freq = 2 : L5 only



dual_freq = 1;



% USER CNMP Menu


%select AAD-B model

usrcnmpfun = 'af_cnmp_mops';

init_cnmp_mops;


%select AAD-A model

%      usrcnmpfun = 'af_cnmpaad';

%      init_aada;


%select AAD-B model

%      usrcnmpfun = 'af_cnmpaad';

%      init_aadb;





% USER Menu

%select the world as the user area

usrpolyfile = 'usrworld.dat';

usrlatstep = 10;

usrlonstep = 10;


%Start time for simulation

TStart = 0;


%End time for simulation

%TEnd = 862200;

TEnd = 86400;


% Size of time step

TStep = 300;


%select CONUS as the user area

%      usrpolyfile = 'usrconus.dat';


%select Alaska as the user area

%      usrpolyfile = 'usralaska.dat';


%select Canada as the user area

%      usrpolyfile = 'usrcanada.dat';


%select Mexico as the user area

%      usrpolyfile = 'usrmexico.dat';


%select North America as the user area

%usrpolyfile = 'usrn_america.dat';


%select Europe as the user area

%      usrpolyfile = 'usreurope.dat';


%select Japan as the user area

%      usrpolyfile = 'usrmsas.dat';


%select Brazil as the user area

%      usrpolyfile = 'usrbrazil.dat';







% check if file(s) exist

i=1;

while i<=size(svfile,2)

   if iscell(svfile)

       fid=fopen(svfile{i});

   else

       fid=fopen(svfile);

       i = size(svfile,2);

   end

   if fid==-1

       fprintf('Almanac file not found.  Please try again.\n');

       return;

   else

       fclose(fid);

   end

   i=i+1;

end






% Mode / Alert limit


%choose PA mode vs NPA

pa_mode = 1;


%choose VAL, HAL, EMT Threshold, and sigma accuracy threshold

vhal = [35, 40, 15, 1.87];

%vhal = [Inf, 1668];


% OUTPUT Menu


%initialize histograms

%init_hist;




% turn on or off output options

%1: Availability  2: V/HPL  3: EMT  4: sig_acc


outputs = [1 1 1 1];


% Assign percentage

percent = 0.995; % 1 = 100%


% Coverage values computed for users with |lat|<lamax

latmax = 90/90*pi/2;



% WRS Menu (not used in ARAIM)


%wrsfile = 'wrs_foc.dat';




% RUN Simulation


svmrun(usrcnmpfun,usrpolyfile, svfile, TStart, TEnd, ...

   TStep, usrlatstep, usrlonstep, outputs, percent, vhal, ...

   pa_mode, dual_freq, latmax);

⛄ 运行结果

⛄ 参考文献

[1]  Blanch J ,  Phelts R E ,  Chen Y H , et al. Initial Results of a Multi-Constellation ARAIM Airborne Prototype[C]// 2017 International Technical Meeting of The Institute of Navigation. 2017.

[2]  Wang S ,  Zhan X ,  Zhang X . Research on airborne ARAIM algorithm testing technology based on UAV platform[J]. Measurement & Control Technology, 2018.

[3] 王士壮战兴群张欣梅浩. 基于UAV的ARAIM测试技术研究[J]. 测控技术, 2018, 37(5):24-28.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关文章
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
18天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
5天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
4天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
21 3
|
15天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
21天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
下一篇
无影云桌面