m基于BP神经网络的障碍物避障和路线规划matlab仿真

简介: m基于BP神经网络的障碍物避障和路线规划matlab仿真

1.算法描述

    BP(Back Propagation)神经网络,其本质是一种基于误差反馈传播的神经网络算法。从结构上讲,BP神经网络是由一个信息的正向传播网络和一个误差的反向传播网络两个模块构成。BP神经网络的结构如下图所示:

image.png

    从图1的结构可知,BP神经网络主要由输入层,隐含层以及输出层三个部分构成。来自外界的信息通过输入层传输进入到隐含层进行处理,并由输出层输出处理结果。当BP神经网络的输出结果和其期望结果之间的误差较大的时候,则进入反向传播阶段,并进行进行审计网络权值的修正,直到输出结果和期望结果误差满足一定条件为止。

    在BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

    学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

   BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-1,1]之间的随机数作为BP神经网络的初始权值。

    本文,通过matlab的BP神经网络工具箱函数newff来构建BP神经网络,通过newff函数构建BP网络,其主要步骤如下:

     第一,BP神经网络初始化后,其matlab程序如下:

     net = newff(traindata, trainaim, HiddenNum);

    其中traindata表示训练数据,trainaim表示训练目标,HiddenNum表示BP神经网络隐含层个数,net表示BP神经网络模型函数。

     第二,BP神经网络参数设置,其matlab程序所示:

设置学习率,其matlab程序为 net.trainParam.lr = 0.25;

设置训练误差目标,其matlab程序为net.trainParam.goal = 1e-8;

设置神经网络训练次数,其matlab程序为net.trainParam.epochs = 200;

    第三,BP神经网络的训练,其matlab程序所示:

    net = train(net,train_data,train_aim);

这里通过train函数对神经网络net进行训练,得到训练后的BP神经网络模型。

    其中,信号的前向传播过程的主要步骤如下:

7511e19ddcefb39cdf16e0bb4de55321_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c90f9253792c235d33a47f25e4f2a27c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
fe70dc78c6700aa02c594d14468a6407_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

算法流程:

8d46aff08c0cf1ec2d90d7842215f7eb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.仿真效果预览
matlab2022a仿真结果如下:

a42db6b00cd104cf8300622404d89ba2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

    time
    %计算四个输入
    if time <= 3
       x(:,time)= min(x(:,time),xmax);
       x(:,time)= max(x(:,time),xmin);
       Xs(time) = X_start;
       Ys(time) = Y_start;  
       Theta    = atan((Y_end-Y_start)/(X_end-X_start)); 
    else
       x(:,time)= min(x(:,time),xmax);
       x(:,time)= max(x(:,time),xmin);
       %计算alpha,机器人运动方向与目标方向之间的夹角
       %计算alpha,机器人运动方向与目标方向之间的夹角  
       if X_end-Xs(time-1) == 0
          tmps1 = inf; 
       else
          tmps1 =(Y_end-Ys(time-1))/(X_end-Xs(time-1));
       end
       if Xs(time-1)-Xs(time-2) == 0
          tmps2 = inf; 
       else
          tmps2 =(Ys(time-1)-Ys(time-2))/(Xs(time-1)-Xs(time-2));
       end   
       %目标方向      %运动方向
       alpha = atan(tmps1) - atan(tmps2);   
  
       %先计算障碍物和机器人的距离,然后将这些距离划分为四类,dr,d,dl和反方向的,如果没有,那么认为距离为inf
       dr  = [];
       dl  = [];
       d   = [];
       vdr = [];
       vdl = [];
       vd  = [];       
       
       for kk = 1:N
           %计算距离,障碍物和小车当前位置的间距
           dist(kk) = sqrt((xobstacle(kk)-Xs(time-1))^2 + (yobstacle(kk)-Ys(time-1))^2)-R(kk);
           if xobstacle(kk)-Xs(time-1) == 0
              vdist(kk) = 1;
           else
              vdist(kk) = sign((yobstacle(kk)-Ys(time-1))/(xobstacle(kk)-Xs(time-1))); 
           end
           if dist(kk)>0
               %计算各个距离和机器人运动方向的夹角
               if xobstacle(kk)-Xs(time-1) == 0
                  tmps3 = inf; 
               else
                  tmps3 =(yobstacle(kk)-Ys(time-1))/(xobstacle(kk)-Xs(time-1));
               end  
               Beta(kk) = (atan(tmps3))*180/pi;
               %根据角度差,分析哪些是dr,d,dl和反方向
               %说明这个障碍物在运动方向的右边
               if Beta(kk) >  15 & Beta(kk) <= 75
                  dr  = [dr,dist(kk)];
                  dl  = dl;
                  d   = d;
                  vdr = [vdr,vdist(kk)];
                  vdl = vdl;
                  vd  = vd;  
               end
               %说明这个障碍物在运动方向的左边边
               if Beta(kk) < -15 & Beta(kk) >= -75
                  dr = dr;
                  dl = [dl,dist(kk)];
                  d  = d;
                  vdr = vdr;
                  vdl = [vdl,vdist(kk)];
                  vd  = vd;    
               end    
               %说明这个障碍物在运动方向的前边
               if Beta(kk) <= 15 & Beta(kk) >= -15
                  dr = dr;
                  dl = dl;
                  d  = [d,dist(kk)];
                  vdr = vdr;
                  vdl = vdl;
                  vd  = [vd,vdist(kk)];  
               end   
           end
       end
       for m=1:Ns
           xs(:,m) = [x(1,time-1) + Sense_radius*cos(Jd(m,1)); 
                      x(2,time-1) + Sense_radius*sin(Jd(m,1))];
           G1(m,1) = func_obstacle(xs(:,m),xobstacle,yobstacle);
           G2(m,1) = func_goal(xs(:,m),Pend); 
           G3(m,1) = G1(m,1) + G2(m,1);
       end
       [val,bestone]=min(G3);
       %如果某个方向有多个障碍物,那么选择最近的那个
       %如果某个方向的距离集合为空集合,那么说明这个方向的障碍物为无穷远,直接赋值一个较大值
       dr_in = min(dr);
       if isempty(dr) == 1
          dr_in = 1e20; 
       end
       d_in  = min(d);
       if isempty(d) == 1
          d_in  = 1e20; 
       end
       dl_in = min(dl);
       if isempty(dl) == 1
          dl_in = 1e20; 
       end
 
       %代入到BP神经网络的四个变量
       %调用BP神经网络的模型
       YOUT        = func_nn_test(dr_in,d_in,dl_in,alpha,net);
       %计算速度和方向
       DELTA_Theta = YOUT/10;
       V           = YOUT;
       %更新小车坐标
       x(:,time) =[x(1,time-1)+lambda*cos(Jd(bestone,1)); 
                   x(2,time-1)+lambda*sin(Jd(bestone,1))];
       Deltalambda = V;
       Deltatheta  = DELTA_Theta;
       %更新小车坐标
       x(:,time)   =[x(1,time)+Deltalambda*cos(Jd(bestone,1)+Deltatheta); 
                     x(2,time)+Deltalambda*sin(Jd(bestone,1)+Deltatheta)];   
 
       %更新坐标
       Xs(time)    = x(1,time);
       Ys(time)    = x(2,time);   
       Tes         = [Tes,Jd(bestone,1)+Deltatheta];
       Vs          = [Vs,Deltalambda];       
    end
 
    %画图
    plot(x(1,time),x(2,time),'.')
    hold on
    drawnow;   
    if sqrt((Xs(time)-X_end)^2+(Ys(time)-Y_end)^2)<0.2
       break;
    end
end
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
2天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
10天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
47 17
|
20天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
21天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
43 10
|
23天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
46 10
|
23天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
24天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。