m基于ESN+BP神经网络的数据预测算法matlab仿真,测试数据为太阳黑子变化数据

简介: m基于ESN+BP神经网络的数据预测算法matlab仿真,测试数据为太阳黑子变化数据

1.算法描述

   在人工神经网络的发展历史上,感知机(Multilayer Perceptron,MLP)网络曾对人工神经网络的发展发挥了极大的作用,也被认为是一种真正能够使用的人工神经网络模型,它的出现曾掀起了人们研究人工神经元网络的热潮。单层感知网络(M-P模型)做为最初的神经网络,具有模型清晰、结构简单、计算量小等优点。但是,随着研究工作的深入,人们发现它还存在不足,例如无法处理非线性问题,即使计算单元的作用函数不用阀函数而用其他较复杂的非线性函数,仍然只能解决线性可分问题.不能实现某些基本功能,从而限制了它的应用。增强网络的分类和识别能力、解决非线性问题的唯一途径是采用多层前馈网络,即在输入层和输出层之间加上隐含层。构成多层前馈感知器网络。

   BP神经网络具有任意复杂的模式分类能力和优良的多维函数映射能力,解决了简单感知器不能解决的异或(Exclusive OR,XOR)和一些其他问题。从结构上讲,BP网络具有输入层、隐藏层和输出层;从本质上讲,BP算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。

   神经网络主要由处理单元、网络拓扑结构、训练规则组成。处理单元是神经网络的基本操作单元,用以模拟人脑神经元的功能。一个处理单元有多个输入、输出,输入端模拟脑神经的树突功能,起信息传递作用;输出端模拟脑神经的轴突功能,将处理后的信息传给下一个处理单元,如图1.1所示。

image.png

基本的神经处理单元其等效于人体的神经元,如图2所示,

image.png

    ESN是Jaeger于2001年提出一种新型递归神经网络,ESN一经提出便成为学术界的热点,并被大量地应用到各种不同的领域中,包括动态模式分类、机器人控制、对象跟踪核运动目标检测、事件监测等,尤其是在时间序列预测问题上,取得了较为突出的贡献。Jaeger本人在提出这种神经网络的第二年便在国际知名期刊上发表了关于将ESN网络用于时间序列预测的文章,为后来其发展做出了巨大的贡献。另外,国内大连理工大学的韩敏等人在ESN的使用方面也做出了突出的贡献。

ESN具有以下特点:

大且稀疏生物连接,RNN被当做一个动态水库
动态水库可以由输入或/和输出的反馈激活
水库的连接权值不会被训练改变?
只有水库的输出单元的权值随训练改变,因此训练是一个线性回归任务

image.png

假设有ESN是一个可调谐的sin波生成器:

黑色箭头是指固定的输入和反馈连接
红色箭头指可训练的输出连接
灰色表示循环内连接的动态水库

    在原始的ESN中,权值的计算是通过pseudoinverse.m这个函数进行计算的,其内容就是:

image.png

即:
image.png

  

    这里,我们的主要方法为:

    将计算得到的权值作为bp神经网络迭代的初始值,然后以这个初始值为迭代过程的第一个值,不断的训练迭代,最后得到ESN-BP输出的权值,然后进行测试。

下面给出整个算法的流程框图:
image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png
image.png

3.MATLAB核心程序

 
%%%% set the number of units
esn.nInternalUnits = nInternalUnits; 
esn.nInputUnits    = nInputUnits; 
esn.nOutputUnits   = nOutputUnits; 
  
connectivity = min([10/nInternalUnits 1]);
nTotalUnits = nInternalUnits + nInputUnits + nOutputUnits; 
 
esn.internalWeights_UnitSR = generate_internal_weights(nInternalUnits,connectivity);
 
 
esn.nTotalUnits = nTotalUnits; 
 
% input weight matrix has weight vectors per input unit in colums
esn.inputWeights = 2.0 * rand(nInternalUnits, nInputUnits)- 1.0;
 
% output weight matrix has weights for output units in rows
% includes weights for input-to-output connections
esn.outputWeights = zeros(nOutputUnits, nInternalUnits + nInputUnits);
 
%output feedback weight matrix has weights in columns
esn.feedbackWeights = (2.0 * rand(nInternalUnits, nOutputUnits)- 1.0);
 
%init default parameters
esn.inputScaling  = ones(nInputUnits, 1);
esn.inputShift    = zeros(nInputUnits, 1);
esn.teacherScaling= ones(nOutputUnits, 1);
esn.teacherShift  = zeros(nOutputUnits, 1);
esn.noiseLevel = 0.0 ; 
esn.reservoirActivationFunction = 'tanh';
esn.outputActivationFunction = 'identity' ; % options: identity or tanh or sigmoid01
esn.methodWeightCompute = 'pseudoinverse' ; % options: pseudoinverse and wiener_hopf
esn.inverseOutputActivationFunction = 'identity' ; 
esn.spectralRadius = 1 ; 
esn.feedbackScaling = zeros(nOutputUnits, 1); 
esn.trained = 0 ; 
esn.type = 'plain_esn' ; 
esn.timeConstants = ones(esn.nInternalUnits,1); 
esn.leakage = 0.5;  
esn.learningMode = 'offline_singleTimeSeries' ; 
esn.RLS_lambda = 1 ; 
 
args = varargin; 
nargs= length(args);
for i=1:2:nargs
  switch args{i},
   case 'inputScaling', esn.inputScaling = args{i+1} ; 
   case 'inputShift', esn.inputShift= args{i+1} ; 
   case 'teacherScaling', esn.teacherScaling = args{i+1} ; 
   case 'teacherShift', esn.teacherShift = args{i+1} ;     
   case 'noiseLevel', esn.noiseLevel = args{i+1} ; 
   case 'learningMode', esn.learningMode = args{i+1} ; 
   case 'reservoirActivationFunction',esn.reservoirActivationFunction=args{i+1};
   case 'outputActivationFunction',esn.outputActivationFunction= args{i+1};        
   case 'inverseOutputActivationFunction', esn.inverseOutputActivationFunction=args{i+1}; 
   case 'methodWeightCompute', esn.methodWeightCompute = args{i+1} ; 
   case 'spectralRadius', esn.spectralRadius = args{i+1} ;  
   case 'feedbackScaling',  esn.feedbackScaling = args{i+1} ; 
   case 'type' , esn.type = args{i+1} ; 
   case 'timeConstants' , esn.timeConstants = args{i+1} ; 
   case 'leakage' , esn.leakage = args{i+1} ; 
   case 'RLS_lambda' , esn.RLS_lambda = args{i+1};
   case 'RLS_delta' , esn.RLS_delta = args{i+1};
       
   otherwise error('the option does not exist'); 
  end      
end

load data.mat
%数据分割
train_fraction                           = 0.5;
[trainInputSequence, testInputSequence]  = split_train_test(inputSequence,train_fraction);
[trainOutputSequence,testOutputSequence] = split_train_test(outputSequence,train_fraction);
 
%generate an esn 
global nInputUnits;
global nInternalUnits;
global nOutputUnits;
nInputUnits          = 2; 
nInternalUnits       = 8; 
nOutputUnits         = 1; 
esn                  = generate_esn(nInputUnits,nInternalUnits,nOutputUnits,'spectralRadius',0.5,'inputScaling',[0.1;0.1],'inputShift',[0;0],'teacherScaling',[0.3],'teacherShift',[-0.2],'feedbackScaling',0,'type','plain_esn'); 
esn.internalWeights  = esn.spectralRadius * esn.internalWeights_UnitSR;
 
%train the ESN
%discard the first 100 points
nForgetPoints        = 100; 
%这里,就固定设置一种默认的学习方式,其他的就注释掉了
[trainedEsn,stateMatrix] = train_esn(trainInputSequence,trainOutputSequence,esn,nForgetPoints) ; 
 
%test the ESN
nForgetPoints        = 100 ; 
predictedTrainOutput = test_esn(trainInputSequence, trainedEsn, nForgetPoints);
predictedTestOutput  = test_esn(testInputSequence,  trainedEsn, nForgetPoints) ; 
 
figure;
plot(testOutputSequence(nForgetPoints+1:end),'b');
hold on
plot(predictedTestOutput,'r');
legend('原数据','预测数据');
title('ESN-BP:测试数据的预测');
 
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
26 16
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
1天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。

热门文章

最新文章