DawnSql在数据治理中的优势

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: DawnSql数据治理平台的优势。1、降低成本DawnSql 既是分布式数据库,也是离线数仓,也是实时数仓DawnSql 既支持标准 Sql,也支持 NoSql,还支持自己定义的语言DawnSql 是分布式缓存,支持对数学的实时反馈,提升业务对实时数据的价值DawnSql 是分布式的服务平台,可以支持服务的负载均衡和故障转移DawnSql 支持机器学习和扩展其方法结论:DawnSql = 传统大数据平台 + MPP平台 + 微服务框架。

数据治理的定义

根据DAMA国际数据管理协会对数据治理定义:数据治理是对数据资产的管理活动行使权力和控制的活动集合(规划、监控和执行)。

数据治理的最终目标是提升数据的价值。

数据治理的流程

数据治理的主要流程:

  1. 数据集成
  2. 数据开发
  3. 数据质量
  4. 数据服务

1. 数据集成

数据集成主要包括两块:数据采集和清洗。

2.数据开发

数据开发包括编码研发和规范建模。编码研发用于构建计算任务,例如创建SQL代码任务、Shell任务、Python任务、MR任务和Spark任务等;规范建模用于构建逻辑化的数据模型。

3. 数据质量

数据质量体现在:时效性、准确性、一致性

时效性

随着业务发展,企业对业务、产品和服务进行调整优化的速度也会增加,在使用一些比较强调实时性的数据时,企业的技术、分析和管理人员需要在短时间内使用数据,一旦数据不能及时利用,这个数据就很有可能就没有价值了。

准确性

如果数据不准确,那么就失去了数据的价值。所以未来保证数据的准确性。会做数据的准确性测试、以及数据的准确性监控。

一致性

提供给下游使用的数据,要有统一的口径和解释。通常情况下,指标是由分析师定义,但实际开发中,业务、产品、甚至是研发自己,也往往会定义一些指标,往往又会因为数据范围的不同,导致结果不一致。因此要避免结果的不一致性,数据的结果一定要有验证的过程。

4. 数据服务

数据服务是为数据的应用提供支持:决策支持、数据大屏、智能数据应用、其它服务

数据治理的架构

总体系统框架

总体技术框架.png

总体技术框架

总体技术框架

数据平台.png

数据平台

传统大数据平台

大数据平台_1.png

大数据平台_1

传统MPP平台

大数据平台_2.png

大数据平台_2

数据管理体系和运作机制

数据管理体系和运作机制.png

数据管理体系和运作机制

数据管理组织架构

数据管理组织架构.png

数据管理组织架构

DawnSql在数据治理中的优势

DawnSql数据治理平台

DawnSql架构图.png

DawnSql架构图

1、降低成本

  1. DawnSql 既是分布式数据库,也是离线数仓,也是实时数仓
  2. DawnSql 既支持标准 Sql,也支持 NoSql,还支持自己定义的语言
  3. DawnSql 是分布式缓存,支持对数学的实时反馈,提升业务对实时数据的价值
  4. DawnSql 是分布式的服务平台,可以支持服务的负载均衡和故障转移
  5. DawnSql 支持机器学习和扩展其方法 结论:DawnSql = 传统大数据平台 + MPP平台 + 微服务框架。 也就是说原来需要多个系统,多个平台的支持,现在只需要 DawnSql 一个就可以了,开发成本,运维成本,硬件成本都极大的降低了。

2、提升数据价值

对比其他平台,DawnSql 在提升数据价值方面,它拥有更快的时效性和安全性。企业对数据的使用,会更快捷,更安全。因为 DawnSql 不仅仅是缓存,它还可以根据企业的实际的业务需求,对不同的人,不同的业务,赋予不同的数据读写权限。让数据更快捷、更准确、更安全的、被业务放使用。

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
目录
打赏
0
0
0
1
2
分享
相关文章
通信行业数据治理:如何实现高效、安全的数据管理?
在未来的发展中,通信行业的企业应加强数据治理意识,提高数据治理能力;同时,积极开展跨行业的合作创新,共同推动行业的繁荣与发展。相信在不久的将来,通信行业将迎来更加美好的明天。
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——4. 特色研发能力
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——4. 特色研发能力
425 1
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览
549 0
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——一、数据建设与治理的现状与诉求
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——一、数据建设与治理的现状与诉求
217 0
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——2. 规划:高屋建瓴,总览企业数据体系
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——2. 规划:高屋建瓴,总览企业数据体系
268 0
全链路数据湖开发治理解决方案2.0重磅升级,全面增强数据入湖、调度和治理能力
阿里云全链路数据湖开发治理解决方案能力持续升级,发布2.0版本。解决方案包含开源大数据平台E-MapReduce(EMR) , 一站式大数据数据开发治理平台DataWorks ,数据湖构建DLF,对象存储OSS等核心产品。支持EMR新版数据湖DataLake集群(on ECS)、自定义集群(on ECS)、Spark集群(on ACK)三种形态,对接阿里云一站式大数据开发治理平台DataWorks,沉淀阿里巴巴十多年大数据建设方法论,为客户完成从入湖、建模、开发、调度、治理、安全等全链路数据湖开发治理能力,帮助客户提升数据的应用效率。
1551 1
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》—— 一、数据建设与治理:用中台方法论治理企业级好数据
带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》—— 一、数据建设与治理:用中台方法论治理企业级好数据
403 0
《全链路数据治理-智能数据建模 》——客户案例:大淘系数据模型治理最佳实践(3)
《全链路数据治理-智能数据建模 》——客户案例:大淘系数据模型治理最佳实践(3)
159 0
《全链路数据治理-智能数据建模 》——客户案例:大淘系数据模型治理最佳实践(5)
《全链路数据治理-智能数据建模 》——客户案例:大淘系数据模型治理最佳实践(5)
141 0
《全链路数据治理-智能数据建模 》——客户案例:大淘系数据模型治理最佳实践(8)
《全链路数据治理-智能数据建模 》——客户案例:大淘系数据模型治理最佳实践(8)
147 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等