带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览

本文涉及的产品
智能数据建设与治理Dataphin,200数据处理单元
简介: 带你读《构建企业级好数据(Dataphin智能数据建设与治理白皮书)》——1. 用中台方法论构建与治理企业级好数据概览

二、用中台方法论构建与治理企业级好数据


1. 概览


阿里巴巴在2015年提出全面启动中台战略,并在集团内部开启了一系列数据技术建设探索,沉淀下特有方法论捋清了数据全生命周期的管理思路,将其植入到瓴羊智能数据建设与治理Dataphin产品中,并与Quick BI(数据可视化分析)、Quick Audience(全域消费者运营增长)一同形成数据中台建设核心产品体系。

 

自2018年问世以来,Dataphin已发展出了内容丰富的功能大图,到目前为止经历了多轮大版本升级,产品核心的能力模块清晰显现,可以帮助企业高效地完成「好数据」的构建。


1) 产品架构

 

image.png

Dataphin产品架构图

 

Dataphin从下而上可分为四个大板块:

 

平台底座:


引擎平台兼容:可支持不同的引擎及部署环境,可纳管不同的引擎,包括但不限于MaxCompute、EMR、Hadoop体系(CDH、华为、星环、亚信等)、交互式分析Holo、Impala、ADB for PG、Starrocks等,Flink商业及开源版等,也支持不同云平台环境的部署及私有IDC部署


多样化开放接口:开放数据集成、数据处理、调度、运维、元数据、质量、安全、标准等几百个标准化接口,可与企业自有系统进行对接集成或进行功能个性与定制


配置化能力:开放了关于消息渠道、审批渠道、认证、审批模板、样式配置等客制化的能力,更好的适配企业的规范及场景。


数据建设平台:


全域数据可集成:通过配置化的方式完成数据的模型构建及指标的构建,并同时支持代码编写模式,更灵活的适应不同的场景和诉求,并支持日千万级调度能力。


规范建模:Dataphin遵循Ralph Kimball的维度建模理论,可根据业务实际情况在Dataphin设计并创建概念模型,并通过概念模型中的业务实体(业务对象或业务活动)创建对应的维度表、事实表、原子指标、业务限定、指标、汇总逻辑表。


指标构建与管理:通过构建的规范化的要素(原子指标、统计周期、维度、业务限定),配置化的方式构建指标;也可将通过代码方式已经加工好的指标注册到汇总表上,进行统一的指标管理。


标签工厂:可通过配置化的方式加工标签,让业务人员也可进行标签的二次加工及群组的圈选;通过快捷的配置,提供群组及标签的服务;根据元数据进行标签及群组进行治理、运行和管理。


数据服务:通过数据服务,可将提供高效的API开发及运维能力,可将数据资源通过API统一服务业务系统。


隐私计算:打通内外循环,实现数据不出域的自由流通,让数据可用不可见,数据价值化的同时保障数据的安全合规。


全域数据治理:Dataphin不仅仅治理数仓内的数据,也需要治理全域数据资产。


资产盘点:在数据治理开始前,需要对全域的数据进行盘点,对元数据进行丰富


标准及规范:Dataphin可支持数据的规范、研发的规范,制定数据标准,让数据治理“有法可依”;通过数据标准的手动和自动映射,可将表资产的字段与标准进行关联,并进行元数据和内容的稽核和监控


资产质量:提供全域的资产质量校验及跟踪方案,从质量稽核与评估(质量大盘、配置质量规则、查看校验记录、质量监控、智能报警)、质量治理(质量工作台、质量整改跟踪)、查看质量报告等功能。


数据安全:通过自动及手动的方式,可对资产进行分类及分级打标,对数据的权限申请流通进行规范的管理,也可对高敏数据在流通前就对数据进行加密处理,避免数据泄露


资源治理:通过元数据,对数据存储与计算资源诊断与治理,在数据价值挖掘的同时,也控制数据的成本,避免数据沼泽。


全域数据运营:数据在消费者手中用起来才能发挥数据的价值,全域运营是将数据资产推送到数据消费场景中,让数据在消费者手动实现价值化。全域数据运营板块主要提供一下功能模块:


资产目录:业务及消费视角的数据资产目录,可快速搜索查找推荐数据资产,推动企业数据文化。针对不同的人群,Datpahin可定制多套目录满足不同场景不同人群的找数、看数需求。


数据门户:通过提供场景式、主题是的数据门户,让用数的成本进一步降低,数据可找到正确的人。


自助消费:通过打通BI分析系统,面向业务人员运营人员,实现从可见到可用;通过提供即系分析的功能,可通过简单的SQL、Python能力,进行数据分析


2) 三大核心优势


Dataphin产品经过了几年的沉淀,积累的丰富的产品能力,也形成了独特的产品核心优势:

 

image.png

三大核心优势

 

多样的计算引擎兼容,可利旧降本:除了支持大数据离线和实时计算主流引擎外,我们还会不断探索和集成更多的计算引擎,以满足不同客户的需求。我们会不断优化引擎的性能和稳定性,以提高计算效率和降低成本。在部署的平台底座上,我们也适配支持了不同的云平台,包括阿里云的公共云多租户、阿里云专有云、阿里云公共云VPC部署,IDC部署,以及其他云平台上进行部署。


资产化驱动构建数据:阿里巴巴多年的内部的实践,我们沉淀了一套完整的方法论,帮助数据资产的构建。这套方法论和产品也在100多家客户中进行了深度的验证。


价值导向、消费驱动的数据治理:我们将进一步完善数据治理体系,包括数据盘点、数据质量管理、数据安全与合规等方面。我们还将借鉴和应用更多的经验和案例,不断提升数据治理的水平和效果。同时,我们也会更加注重数据的价值和消费者需求,以提供更有针对性和可用性的数据治理解决方案。

相关文章
|
5月前
|
安全 Java Apache
Java中的数据安全与隐私保护技术
Java中的数据安全与隐私保护技术
|
2月前
|
自然语言处理 算法 Unix
【数据安全】敏感字过滤方案总结
【数据安全】敏感字过滤方案总结
48 1
|
2月前
|
Java fastjson Apache
【数据安全】数据脱敏方案总结
【数据安全】数据脱敏方案总结
116 1
|
2月前
|
存储 人工智能 安全
数据治理:强化数据安全与隐私保护的基石
在当今这个数字化时代,数据已成为推动社会进步和企业发展的核心驱动力。从个人消费习惯到企业运营策略,从政府决策支持到科研创新突破,数据无处不在,其价值不言而喻。然而,随着数据量的爆炸性增长和流通范围的扩大,数据安全与隐私保护问题也日益凸显,成为制约数据价值最大化利用的重要瓶颈。因此,构建完善的数据治理体系,特别是强化数据安全与隐私保护,成为了时代发展的必然要求。
|
3月前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的坚固防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系社会秩序、保障个人隐私与企业机密的关键防线。本文旨在深入探讨网络安全漏洞的成因与影响,解析加密技术如何筑起数据安全的屏障,并强调提升公众安全意识的重要性,共同绘制一幅数字时代安全防护的蓝图。
本文聚焦网络安全与信息安全领域,通过剖析网络安全漏洞的多样形态及其背后成因,揭示其对个人、企业乃至国家安全的潜在威胁。随后,详细阐述了加密技术的原理、分类及应用,展现其在保护数据安全方面的核心作用。最后,强调了提升全民网络安全意识的紧迫性,提出具体策略与建议,旨在构建一个更加安全、可靠的数字环境。
|
2月前
|
人工智能 安全 大数据
CDGA|数据要素与数据安全:携手构建可信数据生态的深远探讨
数据要素与数据安全是数字经济时代不可分割的双生子。只有在保障数据安全的前提下,才能充分发挥数据要素的价值,推动数字经济持续健康发展。构建可信数据生态,需要政府、企业、社会组织及广大公众的共同努力,形成合力,共同应对挑战,共创数字经济的美好未来。
|
3月前
|
存储 安全 数据库
双重防护,无懈可击!Python AES+RSA加密方案,构建最强数据安全堡垒
【9月更文挑战第11天】在数字时代,数据安全至关重要。AES与RSA加密技术相结合,构成了一道坚固防线。AES以其高效性保障数据加密,而RSA则确保密钥安全传输,二者相辅相成,提供双重保护。本文通过Python代码示例展示了这一加密方案的魅力,强调了其在实际应用中的重要性和安全性。使用HTTPS等安全协议传输加密密钥和密文,确保数据在数字世界中自由流通而无忧。
78 1
|
5月前
|
SQL 关系型数据库 MySQL
如何在Dataphin中构建Flink+Paimon流式湖仓方案
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
7855 10
如何在Dataphin中构建Flink+Paimon流式湖仓方案
|
4月前
|
监控 安全 数据安全/隐私保护
确保数据安全与隐私保护的数据治理最佳实践
【8月更文第13天】随着数据成为企业最重要的资产之一,数据安全和隐私保护变得至关重要。本文将探讨数据治理中的一些最佳实践,并提供具体的代码示例来说明如何实施这些策略。
917 4
|
4月前
|
存储 安全 数据库
双重防护,无懈可击!Python AES+RSA加密方案,构建最强数据安全堡垒
【8月更文挑战第3天】在数字时代,数据安全至关重要。Python AES+RSA加密方案提供了一种强大且可靠的数据保护方式。AES以高效安全著称,适用于大量数据的快速加密;RSA作为非对称加密技术,确保了密钥传输的安全性。二者结合形成“内外兼修”的加密策略:AES加密数据内容,RSA保护AES密钥,共同构建起数据安全的双重保险。通过示例代码展示了这一加密流程,强调了加密后密钥与密文的安全传输和存储的重要性。在实际应用中,应采用HTTPS等安全协议进行传输,并将数据安全存储于加密的数据库或文件系统中。
87 12

热门文章

最新文章