《python机器学习从入门到高级》之分类算法:下(含详细代码)

简介: 《python机器学习从入门到高级》之分类算法:下(含详细代码)
  • ✨本文收录于《python机器学习从入门到高级》专栏,此专栏主要记录如何使用python实现机器学习模型,尽量坚持每周持续更新,欢迎大家订阅!
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

本专栏主要从==代码角度==介绍如何使用python实现机器学习算法,想要了解具体机器学习理论的小伙伴,可以看我的这个专栏:统计学习方法

🍁1.前言

在上一篇文章中,我们介绍了如何对mnist数据集建立一个二分类模型,我们当时解决的问题是给我一张图片,判断是否是数字7,但是我们不仅仅对数字7感兴趣,我们希望给我一张任意的图片,计算机能告诉我这张图片是数字几。这是一个多分类问题。一些算法(如SGD分类器、 随机森林分类器朴素贝叶斯分类器)能处理多个类。其他(如logistic回归)是严格的二元分类器。但是我们可以通过一些策略来实现使用二分类器进行多分类

  • OvR一种方法是对于0-9十个类别,我们对每个类建立一个二分类器。判断是否属于该类,具体实现方法是,给我一张图片,分别使用这十个分类器预测属于该类的概率。选择概率最大的那一类作为预测结果
  • OvO另一种方法是对于0-9十个类别,每一次选两个类别进行比较,比较属于哪一类的概率更大。对于minist数据集,则必须在所有45个分类器进行比较,看看哪个类赢的最多。OvO的主要优点是,每个分类器只需要在训练集的一部分进行训练,即选择需要区分的两个类的数据集。然而,对于大多数二进制分类算法,OvR是首选。

当我们使用二分类器来处理多分类任务时,sklearn会自动选择OvO或者OvR来处理。例如我们以支持向量机(SVM)为例

🍂 2.从二元分类到多分类

# 导入数据集
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
import numpy as np
X, y = mnist["data"], mnist["target"]
y = y.astype(np.uint)#更改y数据类型为整数
# 将数据划分为测试集和训练集
X_train,X_test,y_train,y_test = X[:6000],X[6000:],y[:6000],y[6000:]
from sklearn.svm import SVC
svm_clf = SVC(gamma="auto", random_state=123)
svm_clf.fit(X_train, y_train) # y_train
svm_clf.predict([X[0]])
array([5], dtype=uint32)


还记得,我们在分类算法上介绍的,第一张图片是数字5,预测正确.
其实SVC默认是采用了OvR策略,我们通过decision_function可以看到每一个样本有10个scores

some_digit_scores = svm_clf.decision_function([X[0]])
some_digit_scores
array([[ 1.8249344 ,  8.01830986,  0.81268669,  4.8465137 ,  5.87200033,
         9.29462954,  3.8465137 ,  6.94086295, -0.21310287,  2.83645231]])


可以看出,最大的是5

np.argmax(some_digit_scores)
5



# 查看一共有几类
svm_clf.classes_
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint32)


注意:训练分类器时,它会将目标类列表按值排序存储在其classes_属性中。在这种情况下,classes_数组中每个类的索引都可以方便地匹配类本身。在本例中,索引5处的类恰好是类5

下面我们使用随机森林模型看看结果

from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(random_state=123)
rf_clf.fit(X_train, y_train) # y_train
rf_clf.predict([X[0]])
array([5], dtype=uint32)

🍃3.误差分析

首先看看混淆矩阵。需要使用Cross_val_predict函数进行预测,然后调用confusion_matrix()

from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_predict

首先这里我将X进行标准化处理

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train.astype(np.float64))
y_train_pred = cross_val_predict(svm_clf, X_train_scaled, y_train, cv=3)
conf_mx = confusion_matrix(y_train, y_train_pred)
conf_mx
array([[576,   0,   4,   2,   3,   2,   2,   0,   3,   0],
       [  0, 649,   9,   1,   3,   1,   0,   3,   4,   1],
       [  4,   5, 531,   7,   8,   2,   3,   9,  11,   1],
       [  0,   5,  28, 542,   2,  14,   1,   9,   5,   2],
       [  0,   2,  14,   0, 578,   1,   2,   6,   0,  20],
       [  3,   4,   9,  16,   7, 450,  10,   7,   3,   5],
       [  3,   2,  23,   0,   2,   7, 567,   2,   2,   0],
       [  2,   8,  14,   0,   7,   0,   0, 593,   0,  27],
       [  4,   7,  15,   8,   2,  15,   6,   2, 488,   4],
       [  4,   2,   9,   7,  13,   2,   0,  25,   3, 536]], dtype=int64)


这是有很多类。使用Matplotlibmatshow()函数查看混淆矩阵的图像表示通常更方便:

plt.matshow(conf_mx, cmap=plt.cm.gray)

plt.show()


png

这个混淆矩阵看起来不错,因为大多数图像都在主对角线上,这意味着它们被正确分类。5比其他数字略暗,这可能意味着数据集中5的图像较少,或者分类器在5上的性能不如其他数字。现在我们来比较错误率。

row_sums = conf_mx.sum(axis=1, keepdims=True)#计算数量
norm_conf_mx = conf_mx / row_sums#计算错误率的混淆矩阵
np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
plt.show()


png

注意,行代表正确的类,列代表预测的列,可以看出2这个数字这一列很亮,说明有很多其他类被误判为2,但是2这一行却又错判为其他类。通过分析混淆矩阵可以让我们深入了解改进分类器的方法。本例中可以先优化数字2,来减少其他数字对2的错判。例如,您可以尝试为看起来像(但不是)的数字收集更多的训练数据,以便分类器可以学习将它们与真实的2区分开来。或者你可以设计一些新的特性来帮助分类器,例如,编写一个算法来计算每个数字圆圈的数量(例如,8有两个,6有一个,5没有)。或者,你可以对图像进行预处理(例如,使用Scikit ImagePillowOpenCV),以使某些图案(例如闭合环)更加突出。

分析单个错误也是一种很好的方法,可以了解分类器正在做什么,以及它失败的原因,但这更困难、更耗时。例如,让我们绘制数字5和3

def plot_digits(instances, images_per_row=10, **options):
    size = 28
    images_per_row = min(len(instances), images_per_row)#每一行的数字
    n_rows = (len(instances) - 1) // images_per_row + 1

    
    n_empty = n_rows * images_per_row - len(instances)
    padded_instances = np.concatenate([instances, np.zeros((n_empty, size * size))], axis=0)
    image_grid = padded_instances.reshape((n_rows, images_per_row, size, size))

    big_image = image_grid.transpose(0, 2, 1, 3).reshape(n_rows * size,
                                                         images_per_row * size)
    
    plt.imshow(big_image, cmap = mpl.cm.binary, **options)
    plt.axis("off")
cl_a, cl_b = 3,5
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]

plt.figure(figsize=(8,8))
plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5)#每一行五个数字
plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5)
plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)
plt.show()


png

上面一行第二张图是错把3误判为5,第二行第一幅图是错把5判为3的情况

🌷4. 多标签分类

到目前为止,每个分类器都是分给一个类,在某些情况下,我们可能希望一个分类器输出多个类,例如一个人脸识别器;如果它能识别一个图片多个人,那么这就是一个多标签分类器。下面我们照样以mnist数据集为例,
假设此时我们的目标一个是大于7的数,另一个是偶数。下面使用KNN算法为例

from sklearn.neighbors import KNeighborsClassifier
y_train_large = (y_train >= 7)
y_train_odd = (y_train % 2 == 0)
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)
KNeighborsClassifier()



knn_clf.predict([X[0]])
array([[False, False]])


我们知道第一个数是5,它小于7并且不是偶数,因此两个返回值都是False

本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!

相关文章
|
22天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
229 55
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
11天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
103 66
|
4天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
45 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
24天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
60 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
15天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
50 20
|
3天前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
8天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
13天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
45 5
|
20天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
41 2