《python机器学习从入门到高级》之分类算法:下(含详细代码)

简介: 《python机器学习从入门到高级》之分类算法:下(含详细代码)
  • ✨本文收录于《python机器学习从入门到高级》专栏,此专栏主要记录如何使用python实现机器学习模型,尽量坚持每周持续更新,欢迎大家订阅!
  • 🌸个人主页:JoJo的数据分析历险记
  • 📝个人介绍:小编大四统计在读,目前保研到统计学top3高校继续攻读统计研究生
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

本专栏主要从==代码角度==介绍如何使用python实现机器学习算法,想要了解具体机器学习理论的小伙伴,可以看我的这个专栏:统计学习方法

🍁1.前言

在上一篇文章中,我们介绍了如何对mnist数据集建立一个二分类模型,我们当时解决的问题是给我一张图片,判断是否是数字7,但是我们不仅仅对数字7感兴趣,我们希望给我一张任意的图片,计算机能告诉我这张图片是数字几。这是一个多分类问题。一些算法(如SGD分类器、 随机森林分类器朴素贝叶斯分类器)能处理多个类。其他(如logistic回归)是严格的二元分类器。但是我们可以通过一些策略来实现使用二分类器进行多分类

  • OvR一种方法是对于0-9十个类别,我们对每个类建立一个二分类器。判断是否属于该类,具体实现方法是,给我一张图片,分别使用这十个分类器预测属于该类的概率。选择概率最大的那一类作为预测结果
  • OvO另一种方法是对于0-9十个类别,每一次选两个类别进行比较,比较属于哪一类的概率更大。对于minist数据集,则必须在所有45个分类器进行比较,看看哪个类赢的最多。OvO的主要优点是,每个分类器只需要在训练集的一部分进行训练,即选择需要区分的两个类的数据集。然而,对于大多数二进制分类算法,OvR是首选。

当我们使用二分类器来处理多分类任务时,sklearn会自动选择OvO或者OvR来处理。例如我们以支持向量机(SVM)为例

🍂 2.从二元分类到多分类

# 导入数据集
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
import numpy as np
X, y = mnist["data"], mnist["target"]
y = y.astype(np.uint)#更改y数据类型为整数
# 将数据划分为测试集和训练集
X_train,X_test,y_train,y_test = X[:6000],X[6000:],y[:6000],y[6000:]
from sklearn.svm import SVC
svm_clf = SVC(gamma="auto", random_state=123)
svm_clf.fit(X_train, y_train) # y_train
svm_clf.predict([X[0]])
array([5], dtype=uint32)


还记得,我们在分类算法上介绍的,第一张图片是数字5,预测正确.
其实SVC默认是采用了OvR策略,我们通过decision_function可以看到每一个样本有10个scores

some_digit_scores = svm_clf.decision_function([X[0]])
some_digit_scores
array([[ 1.8249344 ,  8.01830986,  0.81268669,  4.8465137 ,  5.87200033,
         9.29462954,  3.8465137 ,  6.94086295, -0.21310287,  2.83645231]])


可以看出,最大的是5

np.argmax(some_digit_scores)
5



# 查看一共有几类
svm_clf.classes_
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint32)


注意:训练分类器时,它会将目标类列表按值排序存储在其classes_属性中。在这种情况下,classes_数组中每个类的索引都可以方便地匹配类本身。在本例中,索引5处的类恰好是类5

下面我们使用随机森林模型看看结果

from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier(random_state=123)
rf_clf.fit(X_train, y_train) # y_train
rf_clf.predict([X[0]])
array([5], dtype=uint32)

🍃3.误差分析

首先看看混淆矩阵。需要使用Cross_val_predict函数进行预测,然后调用confusion_matrix()

from sklearn.metrics import confusion_matrix
from sklearn.model_selection import cross_val_predict

首先这里我将X进行标准化处理

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train.astype(np.float64))
y_train_pred = cross_val_predict(svm_clf, X_train_scaled, y_train, cv=3)
conf_mx = confusion_matrix(y_train, y_train_pred)
conf_mx
array([[576,   0,   4,   2,   3,   2,   2,   0,   3,   0],
       [  0, 649,   9,   1,   3,   1,   0,   3,   4,   1],
       [  4,   5, 531,   7,   8,   2,   3,   9,  11,   1],
       [  0,   5,  28, 542,   2,  14,   1,   9,   5,   2],
       [  0,   2,  14,   0, 578,   1,   2,   6,   0,  20],
       [  3,   4,   9,  16,   7, 450,  10,   7,   3,   5],
       [  3,   2,  23,   0,   2,   7, 567,   2,   2,   0],
       [  2,   8,  14,   0,   7,   0,   0, 593,   0,  27],
       [  4,   7,  15,   8,   2,  15,   6,   2, 488,   4],
       [  4,   2,   9,   7,  13,   2,   0,  25,   3, 536]], dtype=int64)


这是有很多类。使用Matplotlibmatshow()函数查看混淆矩阵的图像表示通常更方便:

plt.matshow(conf_mx, cmap=plt.cm.gray)

plt.show()


png

这个混淆矩阵看起来不错,因为大多数图像都在主对角线上,这意味着它们被正确分类。5比其他数字略暗,这可能意味着数据集中5的图像较少,或者分类器在5上的性能不如其他数字。现在我们来比较错误率。

row_sums = conf_mx.sum(axis=1, keepdims=True)#计算数量
norm_conf_mx = conf_mx / row_sums#计算错误率的混淆矩阵
np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
plt.show()


png

注意,行代表正确的类,列代表预测的列,可以看出2这个数字这一列很亮,说明有很多其他类被误判为2,但是2这一行却又错判为其他类。通过分析混淆矩阵可以让我们深入了解改进分类器的方法。本例中可以先优化数字2,来减少其他数字对2的错判。例如,您可以尝试为看起来像(但不是)的数字收集更多的训练数据,以便分类器可以学习将它们与真实的2区分开来。或者你可以设计一些新的特性来帮助分类器,例如,编写一个算法来计算每个数字圆圈的数量(例如,8有两个,6有一个,5没有)。或者,你可以对图像进行预处理(例如,使用Scikit ImagePillowOpenCV),以使某些图案(例如闭合环)更加突出。

分析单个错误也是一种很好的方法,可以了解分类器正在做什么,以及它失败的原因,但这更困难、更耗时。例如,让我们绘制数字5和3

def plot_digits(instances, images_per_row=10, **options):
    size = 28
    images_per_row = min(len(instances), images_per_row)#每一行的数字
    n_rows = (len(instances) - 1) // images_per_row + 1

    
    n_empty = n_rows * images_per_row - len(instances)
    padded_instances = np.concatenate([instances, np.zeros((n_empty, size * size))], axis=0)
    image_grid = padded_instances.reshape((n_rows, images_per_row, size, size))

    big_image = image_grid.transpose(0, 2, 1, 3).reshape(n_rows * size,
                                                         images_per_row * size)
    
    plt.imshow(big_image, cmap = mpl.cm.binary, **options)
    plt.axis("off")
cl_a, cl_b = 3,5
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]

plt.figure(figsize=(8,8))
plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5)#每一行五个数字
plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5)
plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)
plt.show()


png

上面一行第二张图是错把3误判为5,第二行第一幅图是错把5判为3的情况

🌷4. 多标签分类

到目前为止,每个分类器都是分给一个类,在某些情况下,我们可能希望一个分类器输出多个类,例如一个人脸识别器;如果它能识别一个图片多个人,那么这就是一个多标签分类器。下面我们照样以mnist数据集为例,
假设此时我们的目标一个是大于7的数,另一个是偶数。下面使用KNN算法为例

from sklearn.neighbors import KNeighborsClassifier
y_train_large = (y_train >= 7)
y_train_odd = (y_train % 2 == 0)
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)
KNeighborsClassifier()



knn_clf.predict([X[0]])
array([[False, False]])


我们知道第一个数是5,它小于7并且不是偶数,因此两个返回值都是False

本章的介绍到此介绍,如果文章对你有帮助,请多多点赞、收藏、评论、关注支持!!

相关文章
|
6天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
|
2天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
20 11
|
17天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
20天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
16天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
22 1
|
17天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
63 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
53 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
62 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
19天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
40 2