【FNN预测】基于蝙蝠优化的模糊神经网络FNN研究附Matlab代码

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 【FNN预测】基于蝙蝠优化的模糊神经网络FNN研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

耙吸挖泥船的耙头产量主要取决于耙头的吸入密度,准确的吸入密度预测对提高耙吸挖泥船疏浚产量具有重要的意义.针对目前对吸入密度预测方法存在精度低,实时效果性差的缺点,提出了一种蝙蝠算法与模糊神经网络相结合的预测方法.通过实测施工数据,构建BA-FNN预测模型.实验表明:BA-FNN预测精度高且稳定性能好,能够为耙头产量预测以及指导施工提供科学有效的参考依据.

⛄ 部分代码

% ======================================================== %

% Files of the Matlab programs included in the book:       %

% Xin-She Yang, Nature-Inspired Metaheuristic Algorithms,  %

% Second Edition, Luniver Press, (2010).   www.luniver.com %

% ======================================================== %    


% -------------------------------------------------------- %

% Bat-inspired algorithm for continuous optimization (demo)%

% Programmed by Xin-She Yang @Cambridge University 2010    %

% -------------------------------------------------------- %

% Usage: bat_algorithm([20 1000 0.5 0.5]);                 %



% -------------------------------------------------------------------

% This is a simple demo version only implemented the basic          %

% idea of the bat algorithm without fine-tuning(微调)the parameters,     %

% Then, though this demo works very well, it is expected that       %

% this demo is much less efficient than the work reported in        %

% the following papers:                                             %

% (Citation details):                                               %

% 1) Yang X.-S., A new metaheuristic bat-inspired algorithm,        %

%    in: Nature Inspired Cooperative Strategies for Optimization    %

%    (NISCO 2010) (Eds. J. R. Gonzalez et al.), Studies in          %

%    Computational Intelligence, Springer, vol. 284, 65-74 (2010).  %

% 2) Yang X.-S., Nature-Inspired Metaheuristic Algorithms,          %

%    Second Edition, Luniver Presss, Frome, UK. (2010).             %

% 3) Yang X.-S. and Gandomi A. H., Bat algorithm: A novel           %

%    approach for global engineering optimization,                  %

%    Engineering Computations, Vol. 29, No. 5, pp. 464-483 (2012).  %

% -------------------------------------------------------------------



% Main programs starts here

function [best,fmin,N_iter]=bat_algorithm(para)

% Display help

help bat_algorithm.m


% Default parameters 默认参数


if nargin<1,  para=[20 1000 0.5 0.5];  end

n=para(1);      % Population size, typically10 to 40

N_gen=para(2);  % Number of generations

A=para(3);      % Loudness  (constant or decreasing)

r=para(4);      % Pulse rate (constant or decreasing)

% This frequency range determines the scalings

% You should change these values if necessary

Qmin=0;         % Frequency minimum

Qmax=2;         % Frequency maximum

% Iteration parameters

N_iter=0;       % Total number of function evaluations  %这是什么意思???

% Dimension of the search variables

d=10;           % Number of dimensions

% Lower limit/bounds/ a vector

Lb=-2*ones(1,d);

% Upper limit/bounds/ a vector

Ub=2*ones(1,d);  

% Initializing arrays

Q=zeros(n,1);   % Frequency

v=zeros(n,d);   % Velocities

% Initialize the population/solutions

for i=1:n,

 Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);

 Fitness(i)=Fun(Sol(i,:));

end

% Find the initial best solution

[fmin,I]=min(Fitness);   %返回多个参数的时候用[ ],fmin接受第一个参数,I接受第二个参数

%这里fmin是最小值,I是最小值的索引,也就是第几个

best=Sol(I,:);


% ======================================================  %

% Note: As this is a demo, here we did not implement the  %

% reduction of loudness and increase of emission rates.   %

% Interested readers can do some parametric studies       %

% and also implementation various changes of A and r etc  %

% ======================================================  %


% Start the iterations -- Bat Algorithm (essential part)  %

for t=1:N_gen,

% Loop over all bats/solutions

       for i=1:n,

         Q(i)=Qmin+(Qmin-Qmax)*rand;%其中rand产生一个0到1的随机数

         v(i,:)=v(i,:)+(Sol(i,:)-best)*Q(i);

         S(i,:)=Sol(i,:)+v(i,:);

         % Apply simple bounds/limits

         Sol(i,:)=simplebounds(Sol(i,:),Lb,Ub);

         % Pulse rate

         if rand>r

         % The factor 0.001 limits the step sizes of random walks

             S(i,:)=best+0.001*randn(1,d);

         end


    % Evaluate new solutions

          Fnew=Fun(S(i,:));

    % Update if the solution improves, or not too loud

          if (Fnew<=Fitness(i)) & (rand<A) ,

               Sol(i,:)=S(i,:);

               Fitness(i)=Fnew;

          end


         % Update the current best solution

         if Fnew<=fmin,

               best=S(i,:);

               fmin=Fnew;

         end

       end

       N_iter=N_iter+n;

       

end

% Output/display

disp(['Number of evaluations: ',num2str(N_iter)]);

disp(['Best =',num2str(best),' fmin=',num2str(fmin)]);


% Application of simple limits/bounds

function s=simplebounds(s,Lb,Ub)

 % Apply the lower bound vector

 ns_tmp=s;

 I=ns_tmp<Lb;

 ns_tmp(I)=Lb(I);

 

 % Apply the upper bound vector

 J=ns_tmp>Ub;

 ns_tmp(J)=Ub(J);

 % Update this new move

 s=ns_tmp;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Objective function: your own objective function can be written here

% Note: When you use your own function, please remember to

%       change limits/bounds Lb and Ub (see lines 52 to 55)

%       and the number of dimension d (see line 51).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z=Fun(u)

% Sphere function with fmin=0 at (0,0,...,0)

z=sum(u.^2);

%%%%% ============ end ====================================



⛄ 运行结果

⛄ 参考文献

[1]张容, 阎红, 杜丽萍. 基于模糊神经网络(FNN)的赤潮预警预测研究[J]. 海洋通报:英文版, 2006, 25(001):83-91.

[2]赵建强, 陈必科, 葛考, et al. 基于FOA—FNN算法的边坡稳定性评价研究[C]// 中国系统工程学会第十八届学术年会. 2014.

[3]郝光杰, 俞孟蕻, and 苏贞. "基于蝙蝠算法优化模糊神经网络的耙吸挖泥船耙头吸入密度研究." 计算机与数字工程 002(2022):050.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
14天前
|
负载均衡 网络协议 网络性能优化
动态IP代理技术详解及网络性能优化
动态IP代理技术通过灵活更换IP地址,广泛应用于数据采集、网络安全测试等领域。本文详细解析其工作原理,涵盖HTTP、SOCKS代理及代理池的实现方法,并提供代码示例。同时探讨配置动态代理IP后如何通过智能调度、负载均衡、优化协议选择等方式提升网络性能,确保高效稳定的网络访问。
91 2
|
20天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
156 80
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
28天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
55 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
26天前
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
25天前
|
数据采集 监控 安全
公司网络监控软件:Zig 语言底层优化保障系统高性能运行
在数字化时代,Zig 语言凭借出色的底层控制能力和高性能特性,为公司网络监控软件的优化提供了有力支持。从数据采集、连接管理到数据分析,Zig 语言确保系统高效稳定运行,精准处理海量网络数据,保障企业信息安全与业务连续性。
41 4
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1月前
|
Go 数据安全/隐私保护 UED
优化Go语言中的网络连接:设置代理超时参数
优化Go语言中的网络连接:设置代理超时参数