GitHub 首个开源图像识别系统又在搞事情!上

简介: GitHub 首个开源图像识别系统又在搞事情!上

今天必须推荐一个由百度飞桨开源的项目-PaddleClas,该 Repo 提供了全球首个完整开源通用图像识别系统。

不仅如此,作为视觉任务的坚实底座,PaddleClas还提供了 35 个系列,近 200 个预训练模型和性能评估,力求为工业界和学术界提供更高效便捷的开发工具,为开发者带来更流畅优质的使用体验,实现行业场景实现落地应用。

想要获取更多PaddleClas相关介绍及教程文档可前往⬇️:

地址: https://github.com/PaddlePaddle/PaddleClas

目前已经提供的应用方向包括::商品识别、车辆识别、LOGO识别、动漫人物识别等。

fbf2cae674dc5c969ba06e825da41ac2.gif

网络异常,图片无法展示
|

a7f8a9a02caa169978e833c6b2c97b03.gif

不仅如此,PaddleClas团队最近还提出了超强悍CPU级骨干网络PP-LCNet!速度提升2倍,超越目前所有SOTA算法!

算法速度优化遇到瓶颈,达不到要求?应用环境没有高性能硬件只有CPU?莫慌,这些开发者们的普遍痛点,今天老逛就来为万千开发者带来破局大法:针对CPU设备及加速库MKLDNN定制的骨干网络PP-LCNet!空口无凭,上图为证!

b7b9a82cfecc3e20dc533224cfdbe65.png

从上图我们可以看出,PP-LCNet在同样精度的情况下,速度远超当前所有的骨架网络,最多可以有2倍的性能优势!它应用在比如目标检测、语义分割等任务算法上,也可以使原本的网络有大幅度的性能提升。

而这个PP-LCNet的论文发布和代码开源后,也着实引来了众多业界开发者的关注,各界大神把PP-LCNet应用在YOLO系列算法上也真实带来了极其可观的性能收益。

d3d2d37b548b95c688f6676c02357db.png

56d33a8f80015c1b1eaa09119464bdb.png

这时候是不是有小伙伴已经按耐不住也想直接上手试试了?!老逛识趣地赶紧送上开源代码的传送门 ⬇️ 大家一定要Star收藏以免走失,也给开源社区一些认可和鼓励。

地址:https://github.com/PaddlePaddle/PaddleClas

而这个PP-LCNet到底是如何设计,从而有这么好的性能的呢?下面小编就带大家来领略一下:

1. PP-LCNet核心技术解读

近年来,很多轻量级的骨干网络问世,各种NAS搜索出的网络尤其亮眼。但这些算法的优化都脱离了产业最常用的Intel CPU设备环境,加速能力也往往不合预期。百度飞桨图像分类套件PaddleClas基于这样的产业现状,针对Intel CPU及其加速库MKLDNN定制了独特的高性能骨干网络PP-LCNet。

比起其他的轻量级SOTA模型,该骨干网络可以在不增加推理时间的情况下,进一步提升模型的性能,最终大幅度超越现有的SOTA模型。


7a29404ecf9e90808451c82733ead73.png

相关实践学习
基于函数计算实现AI推理
本场景基于函数计算建立一个TensorFlow Serverless AI推理平台。
目录
相关文章
|
1天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第18天】 随着人工智能技术的飞速发展,特别是深度学习在图像识别领域的突破性进展,自动驾驶技术已经从科幻走向现实。本文旨在探讨如何将基于深度学习的图像识别技术集成到自动驾驶系统中,以提升车辆的环境感知能力、决策效率及安全性。文中不仅回顾了当前自动驾驶中图像识别的关键挑战,还介绍了几种前沿的深度学习模型及其在处理复杂交通场景下的有效性。此外,本文还将讨论数据预处理、增强技术以及模型优化策略对提高自动驾驶系统性能的重要性。
|
2天前
|
机器学习/深度学习 人工智能 自动驾驶
探索基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】 随着人工智能技术的飞速发展,尤其是深度学习在图像处理和识别领域的突破性进展,自动驾驶汽车的研发与实现已逐渐成为可能。本文旨在探讨深度学习技术在图像识别中的关键作用,并分析其在自动驾驶系统中的具体应用。通过回顾卷积神经网络(CNN)的基本结构和工作原理,本文阐述了深度学习模型如何从大量数据中学习特征,并在复杂的道路环境中准确识别行人、车辆、交通标志等关键要素。此外,文章还讨论了深度学习技术在提高自动驾驶安全性方面的潜力及面临的挑战。
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】 随着人工智能技术的飞速发展,尤其是深度学习在图像识别领域的突破性进展,自动驾驶汽车逐渐成为现实。本文旨在探讨基于深度学习的图像识别技术如何被集成到自动驾驶系统中,以提供实时、准确的环境感知能力。文中首先介绍了深度学习的基本原理及其在图像处理中的关键作用,随后详细阐述了几种主流的深度学习模型如卷积神经网络(CNN)和递归神经网络(RNN),并讨论了它们在自动驾驶车辆环境感知、决策制定和导航中的实际应用。此外,文章还分析了目前该领域所面临的挑战,包括数据集质量、模型泛化能力和计算资源限制等问题,并对未来的发展趋势进行了展望。
|
2天前
|
机器学习/深度学习 传感器 监控
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】随着人工智能技术的飞速发展,深度学习已经成为了计算机视觉领域的核心驱动力。特别是在图像识别任务中,卷积神经网络(CNN)已经取得了突破性的进展,为自动驾驶系统提供了强有力的技术支持。本文将探讨深度学习在图像识别领域的最新发展及其在自动驾驶系统中的具体应用,同时分析目前所面临的主要挑战与未来的发展趋势。
|
3天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第16天】 随着人工智能技术的突飞猛进,特别是深度学习在图像识别领域的应用,已成为推动自动驾驶技术发展的关键因素。本文旨在探讨基于深度学习的图像识别技术如何被集成到自动驾驶系统中,提高车辆的环境感知能力,确保行车安全。我们将分析卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型在处理实时交通数据中的优势,同时探讨这些技术面临的挑战和潜在的改进方向。通过实验结果验证,基于深度学习的图像识别系统能够有效提升自动驾驶汽车的导航精度与决策效率,为未来智能交通系统的实现奠定基础。
16 4
|
4天前
|
机器学习/深度学习 自动驾驶 算法
利用深度学习优化图像识别在自动驾驶系统中的应用
【5月更文挑战第15天】 随着自动驾驶技术的不断进步,图像识别作为其核心技术之一,对准确性和实时性的要求日益提高。本文旨在探讨如何通过深度学习算法优化图像识别流程,进而提升自动驾驶系统的整体性能。文中首先回顾了当前自动驾驶领域中图像识别面临的挑战,接着介绍了几种先进的深度学习模型及其在图像处理中的应用,最后提出了一个结合这些模型的优化框架,并对其潜在的改进效果进行了分析。
|
4天前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第15天】随着人工智能技术的飞速发展,尤其是深度学习在图像处理领域的突破性进展,自动驾驶系统得以实现更加精准和高效的环境感知。本文章深入探讨了深度学习技术在自动驾驶车辆图像识别中的运用,分析了卷积神经网络(CNN)等模型在车辆、行人以及交通标志识别上的优势与挑战。同时,本文还针对当前自动驾驶系统中存在的数据偏差、实时处理能力及安全性问题提出了潜在的解决策略,并展望了未来发展趋势。
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第14天】 随着人工智能技术的突飞猛进,特别是深度学习在图像处理领域的应用,为自动驾驶汽车的环境感知和决策提供了新的解决方案。本文将探讨基于深度神经网络的图像识别技术如何增强自动驾驶系统的性能,包括车辆检测、行人识别以及交通标志识别等方面。通过分析现有文献和最新研究成果,我们概述了关键技术挑战,并提出了潜在的改进方向。此外,文章还对目前自动驾驶领域中深度学习技术的实际应用情况进行了案例分析,以期为未来研究提供参考。
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第14天】 随着人工智能技术的飞速发展,深度学习已成为推动多个领域革新的关键力量。特别是在图像识别领域,深度学习技术已经实现了巨大的突破,为自动驾驶系统提供了强大的视觉处理能力。本文将探讨深度学习技术如何增强自动驾驶车辆的环境感知能力,以及这些技术是如何被集成到复杂的驾驶决策过程中的。通过对现有文献和最新研究成果的综合分析,我们将概述当前最前沿的算法和架构,并讨论它们在实际道路测试中的表现。
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第14天】 随着人工智能领域的飞速发展,特别是深度学习在图像处理和识别方面取得的重大进展,自动驾驶技术迎来了前所未有的发展机遇。本文旨在探讨基于深度学习的图像识别技术如何被集成到自动驾驶系统中,以及这种集成如何提高车辆的环境感知能力、决策效率和安全性。文中首先回顾了当前自动驾驶技术面临的挑战,随后详细介绍了深度学习技术的核心原理和在图像识别方面的应用,最后通过案例分析展示了该技术在实际自动驾驶场景中的表现和潜力。
21 7