m基于VCG拍卖机制的认知无线电频谱竞拍共享算法matlab仿真

简介: m基于VCG拍卖机制的认知无线电频谱竞拍共享算法matlab仿真

1.算法描述

    认知无线电的概念起源于1999年Joseph Mitolo博士的奠基性工作,其核心思想是CR具有学习能力,能与周围环境交互信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生。CR的学习能力是使它从概念走向实际应用的真正原因。有了足够的人工智能,它就可能通过吸取过去的经验来对实际的情况进行实时响应,过去的经验包括对死区、干扰和使用模式等的了解。这样,CR有可能赋予无线电设备根据频带可用性、位置和过去的经验来自主确定采用哪个频带的功能。随着许多CR相关研究的展开,对CR技术存在多种不同的认识。最典型的一类是围绕Mitola博士提出的基于机器学习和模式推理的认知循环模型来展开研究,他们强调软件定义无线电(Software Defined Radio,SDR)是CR实现的理想平台。

  针对CR研究中存在的多种描述,美国FCC提出了CR的一个相当简化的版本。他们在FCC-03322中建议任何具有自适应频谱意识的无线电都应该被称为认知无线电CR。FCC更确切地把CR定义为基于与操作环境的交互能动态改变其发射机参数的无线电,其具有环境感知和传输参数自我修改的功能。CR是一种新型无线电,它能够在宽频带上可靠地感知频谱环境,探测合法的授权用户(主用户)的出现,能自适应地占用即时可用的本地频谱,同时在整个通信过程中不给主用户带来有害干扰。无线电环境中的无线信道和干扰是随时间变化的,这就暗示CR将具有较高的灵活性。目前,CR的应用大多是基于FCC的观点,因此也称CR为频谱捷变无线电、机会频谱接入无线电等。

  认知无线电技术是目前解决频谱资源利用不均衡的一种有效方法,其中,动态频谱分配是实现频谱资源共享的关键技术。在认知无线电系统中,认知用户的最终目的是充分使用空闲频段。在认知无线电系统中,由于与授权用户共存以及可用频段的跨度很大这两个问题,使得频谱共享技术在认知无线电系统中显得尤为重要。在CR系统中,认知用户需要根据频谱检测的结果去分配可用频谱。在多认知用户的系统中,可能会有多个认知用户想要使用可用频谱,而它们同时接入可能会导致碰撞冲突,所以认知无线电系统需要专门的频谱共享算法去解决这个问题。

   在当前无线频谱资源严重不足的情况下,如何能够将频谱池中的空闲频谱合理地分配给有需要的认知用户,需要通过资源配置算法来实现。传统的协作式频谱共享技术都是假设各认知用户会按照自己的实际需要上报自己的需求,但是在资源不足的场景中,各个认知用户可能出于自私等原因会虚报自己的频谱需求,我们提出一种克服用户自私性的频谱共享算法。

    VCG拍卖是更一般的特定用途 VCG机制。当VCG拍卖尝试对商品进行社会最优分配时,VCG机制允许从一组可能的结果中选择社会最优的结果。如果竞标者之间可能发生勾结,则VCG的表现将优于 广义第二价拍卖 为卖方产生的收入和分配效率。VCG机制满足激励兼容和个体理性的条件,并且在所有分配单物品的有效,激励兼容且个体理性的机制中,VCG机制使得每个竞拍者的期望支付最大化.

   Vickrey–Clarke–Groves(VCG)拍卖 是多件物品的密封竞价拍卖的一种。投标人提交的投标书将报告其对这些物品的估价,而不知道其他投标人的投标书。拍卖系统将物品分配到 社会最优 方式:向每个人收取他们对其他投标人造成的伤害。它给竞标者 激励他们竞标其真实估值,通过确保每个投标人的最佳策略是对项目的真实估值进行投标;竞标者串通可能会破坏它,特别是在某些情况下,单个竞标者以不同的名称进行多次竞标会破坏这一点。它是一个 Vickrey拍卖会 用于多个项目。

2.仿真效果预览
matlab2022a仿真结果如下:

1.png
2.png
3.png

3.MATLAB核心程序

    nn
    TIME    = 10000;
    NUM     = 0;
    %信道lemda
    lemda2  =  1/1000 + (1/100-1/1000)*rand(N,1);%1/1000 ~ 1/100的均匀分布
    hi      = zeros(nn,1);
    for t = 1:TIME
        %Step 1,算法执行的开始,对参加竞价的次用户数等进行初始化。
        hi   = rand(nn,1);
        hicr = rand(nn,1);
        IIs = [];
        for i = 1:nn
            fail = 1;
            %授权用户出现的概率
            P   = rand;
            P2  = rand;
            
            while fail == 1
                if P2 < 0.01%有认知用户
                    %Step 2,计算出次用户 i 对频谱 j 的估价vi
                    for j =1:N
                        Vi1(j) = 1 - lemda(j)/(log2(1+hi(i)*p/No));
                        Vi2(j) = 1 - lemda2(j)/(log2(1+hicr(i)*p/No));
                    end
                    %Step 3,计算出每个次用户最终提交的竞标价格bi
                    for mm1 =1:N
                        bi1(j) = Vi1(j) - randn(1);
                        bi2(j) = Vi2(j) - randn(1);
                    end
                    %Step 4,比较每个次用户的估价价格和自己提交的竞价价格的大小,如果估价
                    %价格小于竞标价格,说明频谱 j 不适合次用户 i,返回到 Step 2,否则
                    %直接执行下一步。
                    for mm1 =1:N
                        Vi_bi1(j) = Vi1(j) - bi1(j);
                        Vi_bi2(j) = Vi2(j) - bi2(j);
                    end
                    Vi_bi = [Vi_bi1,Vi_bi2]; 
                else%无认知用户
                    %Step 2,计算出次用户 i 对频谱 j 的估价vi
                    for j =1:N
                        Vi(j) = 1 - lemda(j)/(log2(1+hi(i)*p/No));
                    end
                    %Step 3,计算出每个次用户最终提交的竞标价格bi
                    for mm1 =1:N
                        bi(j) = Vi(j) - randn(1);
                    end
                    %Step 4,支付机制Vi_bi
                    for mm1 =1:N
                        Vi_bi(j) = Vi(j) - bi(j);
                    end
                end
                %去掉小于0的
                Ind1 = find(Vi_bi>0);
                if isempty(Ind1)==1
                   fail = 1;
                else%没有中断,则选择%Step 5,找出最大的竞标价格及对应的次用户 i。
                   [VV,II] = max(Vi_bi);  
                   fail = 0;
                end 
            end
            IIs=[IIs,II];
        end
        %如果IIs前后不同,则说明成功,进行一次切换
        for iis = 1:length(IIs)-1
            if IIs(iis+1)~=IIs(iis)
               NUM = NUM+1;
            end
        end
    end
    PRO(nn) = NUM/TIME;
end
相关文章
|
6天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
6天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
101 68
|
9天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
9天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
7天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
41 18
|
16天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
29天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
168 80
|
17天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
17天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
15天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章