机器学习: Label vs. One Hot Encoder

简介: 机器学习: Label vs. One Hot Encoder

如果您是机器学习的新手,您可能会对这两者感到困惑——Label 编码器和 One-Hot 编码器。这两个编码器是 Python 中 SciKit Learn 库的一部分,它们用于将分类数据或文本数据转换为数字,我们的预测模型可以更好地理解这些数字。今天,本文通过一个简单的例子来了解一下两者的区别。

1. Label Encoding

首先,您可以在此处找到 Label Encoder 的 SciKit Learn 文档。现在,让我们考虑以下数据:

在本例中,第一列是国家列,全是文本。正如您现在可能知道的那样,如果我们要在数据上运行任何类型的模型,我们就不能在数据中包含文本。因此,在我们运行模型之前,我们需要为模型准备好这些数据。

为了将这种分类文本数据转换为模型可理解的数值数据,我们使用了标签编码器类。因此,要对第一列进行标签编码,我们所要做的就是从 sklearn 库中导入 LabelEncoder 类,拟合并转换数据的第一列,然后用新的编码数据替换现有的文本数据。让我们看一下代码。

from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
x[:, 0] = labelencoder.fit_transform(x[:, 0])

我们假设数据在一个名为“x”的变量中。运行这段代码后,如果您检查 x 的值,您会看到第一列中的三个国家已被数字 0、1 和 2 替换。

这就是标签编码的全部内容。但是根据数据,标签编码引入了一个新问题。例如,我们将一组国家名称编码为数字数据。这实际上是分类数据,行之间没有任何关系。

这里的问题是,由于同一列中有不同的数字,模型会误解数据的某种顺序,0 < 1 < 2。但事实并非如此。为了克服这个问题,我们使用 One Hot Encoder。

2. One Hot Encoder

现在,正如我们已经讨论过的,根据我们拥有的数据,我们可能会遇到这样的情况:在标签编码之后,我们可能会混淆我们的模型,认为列中的数据具有某种顺序或层次结构,而实际上我们显然不这样做没有它。为避免这种情况,我们对该列进行“OneHotEncode”。

One Hot Encoder 的作用是,它需要一个具有分类数据的列,该列已经过标签编码,然后将该列拆分为多个列。这些数字将替换为 1 和 0,具体取决于哪一列具有什么值。在我们的示例中,我们将获得三个新列,每个国家一列 - 法国、德国和西班牙。

对于第一列值为法国的行,“法国”列将为“1”,其他两列将为“0”。同样,对于第一列值为 Germany 的行,“Germany”列的值为“1”,其他两列的值为“0”。

One Hot Encoder 的 Python 代码也非常简单:

from sklearn.preprocessing import OneHotEncoder
onehotencoder = OneHotEncoder(categorical_features = [0])
x = onehotencoder.fit_transform(x).toarray()

正如您在构造函数中看到的,我们指定哪一列必须进行 One Hot Encoder,在本例中为 [0]。然后我们用我们刚刚创建的 one hot encoder 对象拟合和转换数组“x”。就是这样,我们的数据集中现在有了三个新列:

如您所见,我们有三个新列,分别为 1 和 0,具体取决于行代表的国家/地区。

这就是 Label Encoding 和 One Hot Encoding 之间的区别。

相关文章
|
6月前
|
机器学习/深度学习
机器学习中label如何实现多标签编码?
介绍了在机器学习中处理多标签分类问题时的一种标签编码方法。
82 0
|
机器学习/深度学习 自然语言处理 异构计算
机器学习实验四:深度学习图像生成Q&A(Part one:图像风格迁移)
机器学习实验四:深度学习图像生成Q&A(Part one:图像风格迁移)
机器学习实验四:深度学习图像生成Q&A(Part one:图像风格迁移)
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
196 6
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
1月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
53 14
|
2月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
95 2
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
78 1
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

热门文章

最新文章