机器学习: Label vs. One Hot Encoder

简介: 机器学习: Label vs. One Hot Encoder

如果您是机器学习的新手,您可能会对这两者感到困惑——Label 编码器和 One-Hot 编码器。这两个编码器是 Python 中 SciKit Learn 库的一部分,它们用于将分类数据或文本数据转换为数字,我们的预测模型可以更好地理解这些数字。今天,本文通过一个简单的例子来了解一下两者的区别。

1. Label Encoding

首先,您可以在此处找到 Label Encoder 的 SciKit Learn 文档。现在,让我们考虑以下数据:

在本例中,第一列是国家列,全是文本。正如您现在可能知道的那样,如果我们要在数据上运行任何类型的模型,我们就不能在数据中包含文本。因此,在我们运行模型之前,我们需要为模型准备好这些数据。

为了将这种分类文本数据转换为模型可理解的数值数据,我们使用了标签编码器类。因此,要对第一列进行标签编码,我们所要做的就是从 sklearn 库中导入 LabelEncoder 类,拟合并转换数据的第一列,然后用新的编码数据替换现有的文本数据。让我们看一下代码。

from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
x[:, 0] = labelencoder.fit_transform(x[:, 0])

我们假设数据在一个名为“x”的变量中。运行这段代码后,如果您检查 x 的值,您会看到第一列中的三个国家已被数字 0、1 和 2 替换。

这就是标签编码的全部内容。但是根据数据,标签编码引入了一个新问题。例如,我们将一组国家名称编码为数字数据。这实际上是分类数据,行之间没有任何关系。

这里的问题是,由于同一列中有不同的数字,模型会误解数据的某种顺序,0 < 1 < 2。但事实并非如此。为了克服这个问题,我们使用 One Hot Encoder。

2. One Hot Encoder

现在,正如我们已经讨论过的,根据我们拥有的数据,我们可能会遇到这样的情况:在标签编码之后,我们可能会混淆我们的模型,认为列中的数据具有某种顺序或层次结构,而实际上我们显然不这样做没有它。为避免这种情况,我们对该列进行“OneHotEncode”。

One Hot Encoder 的作用是,它需要一个具有分类数据的列,该列已经过标签编码,然后将该列拆分为多个列。这些数字将替换为 1 和 0,具体取决于哪一列具有什么值。在我们的示例中,我们将获得三个新列,每个国家一列 - 法国、德国和西班牙。

对于第一列值为法国的行,“法国”列将为“1”,其他两列将为“0”。同样,对于第一列值为 Germany 的行,“Germany”列的值为“1”,其他两列的值为“0”。

One Hot Encoder 的 Python 代码也非常简单:

from sklearn.preprocessing import OneHotEncoder
onehotencoder = OneHotEncoder(categorical_features = [0])
x = onehotencoder.fit_transform(x).toarray()

正如您在构造函数中看到的,我们指定哪一列必须进行 One Hot Encoder,在本例中为 [0]。然后我们用我们刚刚创建的 one hot encoder 对象拟合和转换数组“x”。就是这样,我们的数据集中现在有了三个新列:

如您所见,我们有三个新列,分别为 1 和 0,具体取决于行代表的国家/地区。

这就是 Label Encoding 和 One Hot Encoding 之间的区别。

相关文章
|
3月前
|
机器学习/深度学习
机器学习中label如何实现多标签编码?
介绍了在机器学习中处理多标签分类问题时的一种标签编码方法。
51 0
|
机器学习/深度学习 自然语言处理 异构计算
机器学习实验四:深度学习图像生成Q&A(Part one:图像风格迁移)
机器学习实验四:深度学习图像生成Q&A(Part one:图像风格迁移)
机器学习实验四:深度学习图像生成Q&A(Part one:图像风格迁移)
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
239 14
|
6月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
114 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
6月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
304 0
|
6月前
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
905 0
|
6月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【2月更文挑战第20天】 在数据科学与人工智能的领域中,支持向量机(SVM)是一种强大的监督学习算法,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将深入探讨SVM的核心概念、工作原理以及实际应用案例。我们将透过算法的数学原理,揭示如何利用SVM进行有效的数据分类与回归分析,并讨论其在处理非线性问题时的优势。通过本文,读者将对SVM有更深层次的理解,并能够在实践中应用这一算法解决复杂的数据问题。
80 0
|
6月前
|
机器学习/深度学习 分布式计算 算法
大模型开发:你如何确定使用哪种机器学习算法?
在大型机器学习模型开发中,选择算法是关键。首先,明确问题类型(如回归、分类、聚类等)。其次,考虑数据规模、特征数量和类型、分布和结构,以判断适合的算法。再者,评估性能要求(准确性、速度、可解释性)和资源限制(计算资源、内存)。同时,利用领域知识和正则化来选择模型。最后,通过实验验证和模型比较进行优化。此过程涉及迭代和业务需求的技术权衡。
104 2
|
6月前
|
机器学习/深度学习 数据采集 存储
使用机器学习算法进行文本分类的方法与实践
本文将介绍使用机器学习算法进行文本分类的方法与实践。通过分析文本特征、选择合适的机器学习算法和构建有效的训练模型,可以实现准确和高效的文本分类任务。我们还将探讨如何处理文本数据预处理、特征提取和模型评估等方面的关键问题,以帮助读者更好地应用机器学习技术解决文本分类挑战。

热门文章

最新文章