【LSTM回归预测】基于北方苍鹰算法优化长短时记忆网络NGO-LSTM实现风电数据预测附matlab代码

简介: 【LSTM回归预测】基于北方苍鹰算法优化长短时记忆网络NGO-LSTM实现风电数据预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对海上风电功率预测精度差的问题,提出一种NGO-LSTM模型.选择在时间序列问题处理上具有良好性能的长短期记忆(LSTM)神经网络,通过寻优能力强、收敛速度快的北方苍鹰算法对LSTM网络隐含层神经元个数、学习率和训练次数等超参数进行优化,得到NGO-LSTM模型.采用江苏省盐城市某400 MW风电场功率数据进行算例分析,在不同条件变量下分别使用NGO-LSTM模型、LSTM模型预测,仿真结果表明,NGO-LSTM模型具有更高的预测精度、更好的预测稳定性.


⛄ 部分代码

%%

% NGO.

% Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems

% Mohammad Dehghani1, Pavel Trojovský1, and Stepan Hubálovský2

% 1Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic

% 2Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic


% " Optimizer"

%%

function [Score,Best_pos,NGO_curve]=NGO(Search_Agents,Max_iterations,Lowerbound,Upperbound,dimensions,objective)

tic


disp('PLEASE WAIT, The program is running.')


Lowerbound=ones(1,dimensions).*(Lowerbound);                              % Lower limit for variables

Upperbound=ones(1,dimensions).*(Upperbound);                              % Upper limit for variables



X=[];

X_new=[];

fit=[];

fit_new=[];

NGO_curve=zeros(1,Max_iterations);




%%

for i=1:dimensions

   X(:,i) = Lowerbound(i)+rand(Search_Agents,1).*(Upperbound(i) -Lowerbound(i));              % Initial population

end

for i =1:Search_Agents

   L=X(i,:);

   fit(i)=objective(L);                    % Fitness evaluation (Explained at the top of the page. )

end



for t=1:Max_iterations  % algorithm iteration

   

   %%  update: BEST proposed solution

   [best , blocation]=min(fit);

   

   if t==1

       xbest=X(blocation,:);                                           % Optimal location

       fbest=best;                                           % The optimization objective function

   elseif best<fbest

       fbest=best;

       xbest=X(blocation,:);

   end

   

   

   %% UPDATE Northern goshawks based on PHASE1 and PHASE2

   

   for i=1:Search_Agents

       %% Phase 1: Exploration

       I=round(1+rand);

       k=randperm(Search_Agents,1);

       P=X(k,:); % Eq. (3)

       F_P=fit(k);

       

       if fit(i)> F_P

           X_new(i,:)=X(i,:)+rand(1,dimensions) .* (P-I.*X(i,:)); % Eq. (4)

       else

           X_new(i,:)=X(i,:)+rand(1,dimensions) .* (X(i,:)-P); % Eq. (4)

       end

       X_new(i,:) = max(X_new(i,:),Lowerbound);X_new(i,:) = min(X_new(i,:),Upperbound);

       

       % update position based on Eq (5)

       L=X_new(i,:);

       fit_new(i)=objective(L);

       if(fit_new(i)<fit(i))

           X(i,:) = X_new(i,:);

           fit(i) = fit_new(i);

       end

       %% END PHASE 1

       

       %% PHASE 2 Exploitation

       R=0.02*(1-t/Max_iterations);% Eq.(6)

       X_new(i,:)= X(i,:)+ (-R+2*R*rand(1,dimensions)).*X(i,:);% Eq.(7)

       

       X_new(i,:) = max(X_new(i,:),Lowerbound);X_new(i,:) = min(X_new(i,:),Upperbound);

       

       % update position based on Eq (8)

       L=X_new(i,:);

       fit_new(i)=objective(L);

       if(fit_new(i)<fit(i))

           X(i,:) = X_new(i,:);

           fit(i) = fit_new(i);

       end

       %% END PHASE 2

       

   end% end for i=1:N

   

   %%

   %% SAVE BEST SCORE

   best_so_far(t)=fbest; % save best solution so far

   average(t) = mean (fit);

   Score=fbest;

   Best_pos=xbest;

   NGO_curve(t)=Score;

end

%%

d

⛄ 运行结果

⛄ 参考文献

[1]李森文, 张伟, 李纯宇,等. 基于SSA-LSTM的海上风电功率预测[J]. 机械与电子, 2022(040-006).

[1]杨耘, 王彬泽, 刘艳,等. 基于时空优化LSTM深度学习网络的气温预测[J]. 徐州工程学院学报:自然科学版, 2020, 35(2):6.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 安全
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
【图像处理】使用四树分割和直方图移动的可逆图像数据隐藏(Matlab代码实现)
134 2
|
28天前
|
存储 监控 并行计算
目标跟踪中常用点迹航迹数据关联算法的MATLAB实现
通过计算测量点与预测点之间的欧氏距离,选择最近邻点进行关联,适用于单目标跟踪场景。
|
3月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
158 0
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
2月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
367 0
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。