只改了五行代码接口吞吐量提升了10多倍

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
性能测试 PTS,5000VUM额度
简介: 首先,提升日志打印级别到DEBUG。emm... 提升不大,好像增加了10左右。然后,拆线程 @Async 注解使用线程池,控制代码线程池数量(之前存在3个线程池,统一配置的核心线程数为100)结合业务,服务总核心线程数控制在50以内,同步增加阻塞最大大小。结果还可以,提升了50,接近200了。

背景
公司的一个ToB系统,因为客户使用的也不多,没啥并发要求,就一直没有经过压测。这两天来了一个“大客户”,对并发量提出了要求:核心接口与几个重点使用场景单节点吞吐量要满足最低500/s的要求。
当时一想,500/s吞吐量还不简单。Tomcat按照100个线程,那就是单线程1S内处理5个请求,200ms处理一个请求即可。这个没有问题,平时接口响应时间大部分都100ms左右,还不是分分钟满足的事情。
然而压测一开,100 的并发,吞吐量居然只有 50 ...

而且再一查,100的并发,CPU使用率居然接近 80% ...

从上图可以看到几个重要的信息。
最小值: 表示我们非并发场景单次接口响应时长。还不足100ms。挺好!
最大值: 并发场景下,由于各种锁或者其他串行操作,导致部分请求等待时长增加,接口整体响应时间变长。5秒钟。有点过分了!!!
再一看百分位,大部分的请求响应时间都在4s。无语了!!!
所以 1s钟的 吞吐量 单节点只有 50 。距离 500 差了10倍。 难受!!!!
分析过程
定位“慢”原因

这里暂时先忽略 CPU 占用率高的问题

首先平均响应时间这么慢,肯定是有阻塞。先确定阻塞位置。重点检查几处:

锁 (同步锁、分布式锁、数据库锁)
耗时操作 (链接耗时、SQL耗时)

结合这些先配置耗时埋点。

接口响应时长统计。超过500ms打印告警日志。
接口内部远程调用耗时统计。200ms打印告警日志。
Redis访问耗时。超过10ms打印告警日志。
SQL执行耗时。超过100ms打印告警日志。

上述配置生效后,通过日志排查到接口存在慢SQL。具体SQL类似与这种:

update table set field = field - 1 where type = 1 and filed > 1;
复制代码
上述SQL相当于并发操作同一条数据,肯定存在锁等待。日志显示此处的等待耗时占接口总耗时 80% 以上。
二话不说先改为敬。因为是压测环境,直接改为异步执行,确认一下效果。
PS:当时心里是这么想的: 妥了,大功告成。就是这里的问题!绝壁是这个原因!优化一下就解决了。当然,如果这么简单就没有必要写这篇文章了...
优化后的效果:

嗯...
emm...
好! 这个优化还是很明显的,提升提升了近2倍。

此时已经感觉到有些不对了,慢SQL已经解决了(异步了~ 随便吧~ 你执行 10s我也不管了),虽然对吞吐量的提升没有预期的效果。但是数据是不会骗人的。
最大值: 已经从 5s -> 2s
百分位值: 4s -> 1s
这已经是很大的提升了。
继续定位“慢”的原因
通过第一阶段的“优化”,我们距离目标近了很多。废话不多说,继续下一步的排查。
我们继续看日志,此时日志出现类似下边这种情况:
2023-01-04 15:17:05:347 INFO ....50 [TID: 1s22s72s8ws9w00] *
2023-01-04 15:17:05:348 INFO ....21 [TID: 1s22s72s8ws9w00] *
2023-01-04 15:17:05:350 INFO ....47 [TID: 1s22s72s8ws9w00] *

2023-01-04 15:17:05:465 INFO ....234 [TID: 1s22s72s8ws9w00] *
2023-01-04 15:17:05:467 INFO ....123 [TID: 1s22s72s8ws9w00] *

2023-01-04 15:17:05:581 INFO ....451 [TID: 1s22s72s8ws9w00] *

2023-01-04 15:17:05:702 INFO ....72 [TID: 1s22s72s8ws9w00] *
复制代码
前三行info日志没有问题,间隔很小。第4 ~ 第5,第6 ~ 第7,第7 ~ 第8 很明显有百毫秒的耗时。检查代码发现,这部分没有任何耗时操作。那么这段时间干什么了呢?

发生了线程切换,换其他线程执行其他任务了。(线程太多了)
日志打印太多了,压测5分钟日志量500M。(记得日志打印太多是有很大影响的)
STW。(但是日志还在输出,所以前两种可能性很高,而且一般不会停顿百毫秒)

按照这三个思路做了以下操作:
首先,提升日志打印级别到DEBUG。emm... 提升不大,好像增加了10左右。
然后,拆线程 @Async 注解使用线程池,控制代码线程池数量(之前存在3个线程池,统一配置的核心线程数为100)结合业务,服务总核心线程数控制在50以内,同步增加阻塞最大大小。结果还可以,提升了50,接近200了。
最后,观察JVM的GC日志,发现YGC频次4/s,没有FGC。1分钟内GC时间不到1s,很明显不是GC问题,不过发现JVM内存太小只有512M,直接给了4G。吞吐量没啥提升,YGC频次降低为2秒1次。
唉,一顿操作猛如虎。
PS:其实中间还对数据库参数一通瞎搞,这里不多说了。

其实也不是没有收获,至少在减少服务线程数量后还是有一定收获的。另外,已经关注到了另外一个点:CPU使用率,减少了线程数量后,CPU的使用率并没有明显的下降,这里是很有问题的,当时认为CPU的使用率主要与开启的线程数量有关,之前线程多,CPU使用率较高可以理解。但是,在砍掉了一大半的线程后,依然居高不下这就很奇怪了。
此时关注的重点开始从代码“慢”方向转移到“CPU高”方向。
定位CPU使用率高的原因
CPU的使用率高,通常与线程数相关肯定是没有问题的。当时对居高不下的原因考虑可能有以下两点:

有额外的线程存在。
代码有部分CPU密集操作。

然后继续一顿操作:

观察服务活跃线程数。
观察有无CPU占用率较高线程。

在观察过程中发现,没有明显CPU占用较高线程。所有线程基本都在10%以内。类似于下图,不过有很多线程。

没有很高就证明大家都很正常,只是多而已...
此时没有下一步的排查思路了。当时想着,算了打印一下堆栈看看吧,看看到底干了啥~
在看的过程中发现这段日志:
"http-nio-6071-exec-9" #82 daemon prio=5 os_prio=0 tid=0x00007fea9aed1000 nid=0x62 runnable [0x00007fe934cf4000]
java.lang.Thread.State: RUNNABLE

at org.springframework.core.annotation.AnnotationUtils.getValue(AnnotationUtils.java:1058)
at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory$AspectJAnnotation.resolveExpression(AbstractAspectJAdvisorFactory.java:216)
at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory$AspectJAnnotation.<init>(AbstractAspectJAdvisorFactory.java:197)
at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory.findAnnotation(AbstractAspectJAdvisorFactory.java:147)
at org.springframework.aop.aspectj.annotation.AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(AbstractAspectJAdvisorFactory.java:135)
at org.springframework.aop.aspectj.annotation.ReflectiveAspectJAdvisorFactory.getAdvice(ReflectiveAspectJAdvisorFactory.java:244)
at org.springframework.aop.aspectj.annotation.InstantiationModelAwarePointcutAdvisorImpl.instantiateAdvice(InstantiationModelAwarePointcutAdvisorImpl.java:149)
at org.springframework.aop.aspectj.annotation.InstantiationModelAwarePointcutAdvisorImpl.<init>(InstantiationModelAwarePointcutAdvisorImpl.java:113)
at org.springframework.aop.aspectj.annotation.ReflectiveAspectJAdvisorFactory.getAdvisor(ReflectiveAspectJAdvisorFactory.java:213)
at org.springframework.aop.aspectj.annotation.ReflectiveAspectJAdvisorFactory.getAdvisors(ReflectiveAspectJAdvisorFactory.java:144)
at org.springframework.aop.aspectj.annotation.BeanFactoryAspectJAdvisorsBuilder.buildAspectJAdvisors(BeanFactoryAspectJAdvisorsBuilder.java:149)
at org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator.findCandidateAdvisors(AnnotationAwareAspectJAutoProxyCreator.java:95)
at org.springframework.aop.aspectj.autoproxy.AspectJAwareAdvisorAutoProxyCreator.shouldSkip(AspectJAwareAdvisorAutoProxyCreator.java:101)
at org.springframework.aop.framework.autoproxy.AbstractAutoProxyCreator.wrapIfNecessary(AbstractAutoProxyCreator.java:333)
at org.springframework.aop.framework.autoproxy.AbstractAutoProxyCreator.postProcessAfterInitialization(AbstractAutoProxyCreator.java:291)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:455)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1808)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:620)
at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:542)
at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:353)
at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:233)
at org.springframework.beans.factory.support.DefaultListableBeanFactory.resolveNamedBean(DefaultListableBeanFactory.java:1282)
at org.springframework.beans.factory.support.DefaultListableBeanFactory.resolveNamedBean(DefaultListableBeanFactory.java:1243)
at org.springframework.beans.factory.support.DefaultListableBeanFactory.resolveBean(DefaultListableBeanFactory.java:494)
at org.springframework.beans.factory.support.DefaultListableBeanFactory.getBean(DefaultListableBeanFactory.java:349)
at org.springframework.beans.factory.support.DefaultListableBeanFactory.getBean(DefaultListableBeanFactory.java:342)
at cn.hutool.extra.spring.SpringUtil.getBean(SpringUtil.java:117)
    ......  
    ......

复制代码
上边的堆栈发现了一个点: 在执行getBean的时候,执行了createBean方法。我们都知道Spring托管的Bean都是提前实例化好放在IOC容器中的。createBean要做的事情有很多,比如Bean的初始化,依赖注入其他类,而且中间还有一些前后置处理器执行、代理检查等等,总之是一个耗时方法,所以都是在程序启动时去扫描,加载,完成Bean的初始化。
而我们在运行程序线程堆栈中发现了这个操作。而且通过检索发现竟然有近200处。
通过堆栈信息很快定位到执行位置:

RedisTool redisTool = BeanUtils.getBean(RedisMaster.class);
复制代码
而RedisMaster类
@Component
@Scope("prototype")
public class RedisMaster implements IRedisTool {

// ......

}
复制代码
没错就是用了多例。而且使用的地方是Redis(系统使用Jedis客户端,Jedis并非线程安全,每次使用都需要新的实例),接口对Redis的使用还是比较频繁的,一个接口得有10次左右获取Redis数据。也就是说执行10次左右的createBean逻辑 ...
叹气!!!
赶紧改代码,直接使用万能的 new 。
在看结果之前还有一点需要提一下,由于系统有大量统计耗时的操作。实现方式是通过:
long start = System.currentTimeMillis();
// ......
long end = System.currentTimeMillis();
long runTime = start - end;

复制代码
或者Hutool提供的StopWatch:
这里感谢一下huoger 同学的评论,当时还误以为该方式能够降低性能的影响,但是实际上也只是一层封装。底层使用的是 System.nanoTime()。
StopWatch watch = new StopWatch();
watch.start();
// ......
watch.stop();
System.out.println(watch.getTotalTimeMillis());
复制代码
而这种在并发量高的情况下,对性能影响还是比较大的,特别在服务器使用了一些特定时钟的情况下。这里就不多说,感兴趣的可以自行搜索一下。

最终结果:

排查涉及的命令如下:

查询服务进程CPU情况: top –Hp pid
查询JVM GC相关参数:jstat -gc pid 2000 (对 pid [进程号] 每隔 2s 输出一次日志)
打印当前堆栈信息: jstack -l pid >> stack.log
总结
结果是好的,过程是曲折的。总的来说还是知识的欠缺,文章看起来还算顺畅,但都是事后诸葛亮,不对,应该是时候臭皮匠。基本都是边查资料边分析边操作,前后花费了4天时间,尝试了很多。

Mysql : Buffer Pool 、Change Buffer 、Redo Log 大小、双一配置...
代码 : 异步执行,线程池参数调整,tomcat 配置,Druid连接池配置...
JVM : 内存大小,分配,垃圾收集器都想换...

总归一通瞎搞,能想到的都试试。
后续还需要多了解一些性能优化知识,至少要做到排查思路清晰,不瞎搞。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
3月前
|
监控 Java 开发工具
### 绝招揭秘!Android平台GB28181设备接入端如何实现资源占用和性能消耗的极限瘦身?
【8月更文挑战第14天】本文介绍在Android平台优化GB28181标准下设备接入的性能方法,涵盖环境搭建、SDK集成与初始化。重点讲解内存管理技巧如软引用、按需加载资源,以及通过硬件加速解码视频数据和图像缩放来减轻CPU与GPU负担。同时采用线程池异步处理视频流,确保UI流畅性。这些策略有助于提高应用效率和用户体验。
44 0
|
4月前
|
消息中间件 缓存 并行计算
每秒钟承载600万订单级别的无锁并行计算框架 Disruptor学习
每秒钟承载600万订单级别的无锁并行计算框架 Disruptor学习
|
4月前
阀性能试验台测控系统响应时间的计算
阀性能试验台测控系统响应时间的计算
18 0
|
6月前
|
算法 芯片
LabVIEW更高的吞吐量与更少的延迟A
LabVIEW更高的吞吐量与更少的延迟A
30 2
|
6月前
|
传感器 算法 测试技术
LabVIEW更高的吞吐量与更少的延迟2
LabVIEW更高的吞吐量与更少的延迟2
40 2
|
存储 缓存 监控
Java 经典面试解析:服务器卡顿、CPU飙升、接口负载剧增
解决这个问题的关键是要找到Java代码的位置。下面分享一下排查思路,以CentOS为例,总结为4步。 第1步,使用top命令找到占用CPU高的进程。 第2步,使用ps –mp命令找到进程下占用CPU高的线程ID。 第3步,使用printf命令将线程ID转换成十六进制数。 第4步,使用jstack命令输出线程运行状态的日志信息。
279 0
|
Serverless
函数计算减少冷启动对性能的影响
函数计算减少冷启动对性能的影响
375 1
|
SQL 消息中间件 JavaScript
效率加倍,高并发场景下的接口请求合并方案
效率加倍,高并发场景下的接口请求合并方案
|
SQL 存储 缓存
原来count(*)就是我们系统的接口性能变差100倍的真凶…
原来count(*)就是我们系统的接口性能变差100倍的真凶…
|
存储 消息中间件 JavaScript
接口请求合并的3种技巧,性能直接爆表!
接口请求合并的3种技巧,性能直接爆表!