【遗传算法】Python Geatpy工具箱介绍

简介: 【遗传算法】Python Geatpy工具箱介绍

👉引言💎


学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。 热爱写作,愿意让自己成为更好的人............ 、

铭记于心
🎉✨🎉我唯一知道的,便是我一无所知🎉✨🎉


【遗传算法】Python Geatpy工具箱介绍


一、 什么是遗传算法?


遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化过程进行的数学方式仿真。生物种群的生存过程普遍遵循达尔文进化准则,群体中的个体根据对环境的适应能力而被大自然所选择或淘汰。进化过程的结果反映在个体的结构上,其染色体包含若干基因,相应的表现型和基因型的联系体现了个体的外部特性与内部机理间逻辑关系。通过个体之间的交叉、变异来适应大自然环境。生物染色体用数学方式或计算机方式来体现就是一串数码,仍叫染色体,有时也叫个体;适应能力是对应着一个染色体的一个数值来衡量;染色体的选择或淘汰则按所面对的问题是求最大还是最小来进行。

image.pngimage.png


二、 遗传算法库Geatpy


2.1 遗传算法工具箱Geatpy参数介绍


API官方参考文档


population参数【重要属性:Chrom,Phen,Objv,CV,FitnV】

  • sizes    : int   - 种群规模,即种群的个体数目。
  • ChromNum : int   - 染色体的数目,即每个个体有多少条染色体。
  • Encoding : str   - 染色体编码方式, 'BG':二进制/格雷编码; 'RI':实整数编码,即实数和整数的混合编码; 'P':排列编码
  • Field    : array - 译码矩阵
  • Chrom    : array - 种群染色体矩阵,每一行对应一个个体的一条染色体。
  • Lind     : int   - 种群染色体长度。
  • ObjV     : array - 种群目标函数值矩阵,每一行对应一个个体的目标函数值,每一列对应一个目标
  • FitnV    : array - 种群个体适应度列向量,每个元素对应一个个体的适应度,最小适应度为0
  • CV       : array - CV(Constraint Violation Value)是用来定量描述违反约束条件程度的矩阵,每行对应一个个体,每列对应一个约束
  • Phen     : array - 种群表现型矩阵(即种群各染色体解码后所代表的决策变量所组成的矩阵)。
  • 如果通过CV矩阵基于可行性法则进行约束的设置,那么 不等式约束需要 ≤,等式约束 需要传入abs( ) (因为遵循值越大,适应度越小的原则)

image.png

image.png

  • ea.Problem.init()中的lbin与ubin(决策变量范围边界矩阵)表示范围区间的开闭,1闭合0开区间
  • Geatpy 结果参数介绍
  • success: True or False,    表示算法是否成功求解。
  • stopMsg:   存储着算法停止原因的字符串。
  • optPop:  存储着算法求解结果的种群对象。如果无可行解,则optPop.sizes=0。optPop.Phen为决策变量矩阵,optPop.ObjV为目标函数值矩阵。
  • lastPop:   算法进化结束后的最后一代种群对象。
  • Vars:   等于optPop.Phen,此处即最优解。若无可行解,则Vars=None。
  • ObjV:   等于optPop.ObjV,此处即最优解对应的目标函数值。若无可行解,ObjV=None。
  • CV:   等于optPop.CV,此处即最优解对应的违反约束程度矩阵。若无可行解,CV=None。
  • startTime:   程序执行开始时间。
  • endTime:   程序执行结束时间。
  • executeTime:   算法 所用时间。
  • nfev:    算法评价次数
  • gd:   (多目标优化且给定了理论最优解时才有) GD指标值。
  • igd:    (多目标优化且给定了理论最优解时才有) IGD指标值。
  • hv:   (多目标优化才有) HV指标值。
  • spacing:   (多目标优化才有) Spacing指标值。


三、最佳实践


3.1 代码示例 | 参数模板


image.png


  • 解集:


header_regex = '|'.join(['{}'] * len(headers))
header_str = header_regex.format(*[str(key).center(width) for key, width in zip(headers, widths)])
print("=" * len(header_str))
            print(header_str)
            print("-" * len(header_str))

image.png

gen: 进化代数      eval:记录评价次数        f\_opt: 当代最优个体的目标函数值           f\_max=当代种群最大函数值          f\_min 最小   f\_avg : 平均水平          f\_std: 标准约束水平

image.pngimage.png


3.2 最佳实践


  • 使用geatpy库求解有向无环图最短路
  • 代码【最短路】一:使用geatpy库
import numpy as np
import geatpy as ea
class MyProblem(ea.Problem):  # 继承Problem父类
    def __init__(self):
        name = 'Shortest_Path'  # 初始化name(函数名称,可以随意设置)
        M = 1  # 初始化M(目标维数)
        maxormins = [1]  # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)
        Dim = 10  # 初始化Dim(决策变量维数)
        varTypes = [1] * Dim  # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)
        lb = [0] * Dim  # 决策变量下界
        ub = [9] * Dim  # 决策变量上界
        lbin = [1] * Dim  # 决策变量下边界 1表示闭合区间,0表示开区间
        ubin = [1] * Dim  # 决策变量上边界
        # 调用父类构造方法完成实例化
        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)
        # 设置每一个结点下一步可达的结点(结点从1开始数,因此列表nodes的第0号元素设为空列表表示无意义)
        self.nodes = [[], [2, 3], [3, 4, 5], [5, 6], [7, 8], [4, 6], [7, 9], [8, 9], [9, 10], [10]]
        # 设置有向图中各条边的权重
        self.weights = {'(1, 2)': 36, '(1, 3)': 27, '(2, 4)': 18, '(2, 5)': 20, '(2, 3)': 13, '(3, 5)': 12,
                        '(3, 6)': 23,
                        '(4, 7)': 11, '(4, 8)': 32, '(5, 4)': 16, '(5, 6)': 30, '(6, 7)': 12, '(6, 9)': 38,
                        '(7, 8)': 20,
                        '(7, 9)': 32, '(8, 9)': 15, '(8, 10)': 24, '(9, 10)': 13}
    def decode(self, priority):  # 将优先级编码的染色体解码得到一条从节点1到节点10的可行路径
        edges = []  # 存储边
        path = [1]  # 结点1是路径起点
        while not path[-1] == 10:  # 开始从起点走到终点
            currentNode = path[-1]  # 得到当前所在的结点编号
            nextNodes = self.nodes[currentNode]  # 获取下一步可达的结点组成的列表
            chooseNode = nextNodes[np.argmax(
                priority[np.array(nextNodes) - 1])]  # 从NextNodes中选择优先级更高的结点作为下一步要访问的结点,因为结点从1数起,而下标从0数起,因此要减去1
            path.append(chooseNode)
            edges.append((currentNode, chooseNode))
        return path, edges
    def aimFunc(self, pop):  # 目标函数
        pop.ObjV = np.zeros((pop.sizes, 1))  # 初始化ObjV
        for i in range(pop.sizes):  # 遍历种群的每个个体,分别计算各个个体的目标函数值
            priority = pop.Phen[i, :]
            path, edges = self.decode(priority)  # 将优先级编码的染色体解码得到访问路径及经过的边
            pathLen = 0
            for edge in edges:
                key = str(edge)  # 根据路径得到键值,以便根据键值找到路径对应的长度
                if not key in self.weights:
                    raise RuntimeError("Error in aimFunc: The path is invalid. (当前路径是无效的。)", path)
                pathLen += self.weights[key]  # 将该段路径长度加入
            pop.ObjV[i] = pathLen  # 计算目标函数值,赋值给pop种群对象的ObjV属性
## 执行脚本
if __name__ == "__main__":
    # 实例化问题对象
    problem = MyProblem()
    # 构建算法
    algorithm = ea.soea_EGA_templet(problem,
                                    ea.Population(Encoding='RI', NIND=4),
                                    MAXGEN=10,  # 最大进化代数
                                    logTras=1)  # 表示每隔多少代记录一次日志信息
    # 求解
    res = ea.optimize(algorithm, verbose=True, drawing=1, outputMsg=False, drawLog=False, saveFlag=True,
                      dirName='result')
    print('最短路程为:%s' % (res['ObjV'][0][0]))
    print('最佳路线为:')
    best_journey, edges = problem.decode(res['Vars'][0])
    for i in range(len(best_journey)):
        print(int(best_journey[i]), end=' ')
    print()

🌹写在最后💖: 路漫漫其修远兮,吾将上下而求索!伙伴们,再见!🌹🌹🌹

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

目录
打赏
0
0
0
0
8
分享
相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
428 55
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
207 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
47 12
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
50 9
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
139 66
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
42 10
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
60 17
解锁文档管理系统高效检索奥秘:Python 哈希表算法探究
在数字化时代,文档管理系统犹如知识宝库,支撑各行各业高效运转。哈希表作为核心数据结构,通过哈希函数将数据映射为固定长度的哈希值,实现快速查找与定位。本文聚焦哈希表在文档管理中的应用,以Python代码示例展示其高效检索特性,并探讨哈希冲突解决策略,助力构建智能化文档管理系统。
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
162 67
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
158 61

热门文章

最新文章