软件测试|Pandas数据分析及可视化应用实践

简介: 软件测试|Pandas数据分析及可视化应用实践

Pandas是一个基于Numpy的数据分析库,它提供了多种数据统计和数据分析功能,使得数据分析人员在Python中进行数据处理变得方便快捷,接下来将使用Pandas对MovieLens 1M数据集进行相关的数据处理操作,运用具体例子更好地认识和学习Pandas在数据分析方面的独特魅力。

准备工作

首先使用Anaconda安装Jupyter Notebook,由于Jupyter支持单个文件上传,为了便于管理,可以通过upload先上传数据集的压缩包,然后通过zipfile解压数据集,解压后的数据集保存在data文件夹下,可以执行如下代码:

注:若upload无法上传数据压缩包,可以将数据压缩包放到Desktop,在Jupyter中找到Desktop文件夹,通过move移动到目标路径下。

导入Pandas,Numpy数据分析包,等待数据分析

数据读取与处理

1、Movielens数据集

MovieLens数据集是GroupLens Research收集电影评分数据集,包括100K,1M,10M等不同规模的数据集,本文选取MovieLens-1M数据集,该数据集包括6040名用户对3900部电影发布的1000209条评论数据。常用作推荐算法,数据统计数据集。

2、读取数据集

Pandas提供了多种方式来读取不同类型数据,本文使用read_csv来读取Movielens-1M各个子数据集,该方法将表格型数据读取为DataFrame对象,这是Pandas核心数据结构之一,另一个是Series。DataFrame表示的是矩阵的数据表,二维双索引数据结构,包括行索引和列索引。Series是一种一维数组型对象,仅包含一个值序列与一个索引。本文所涉及的数据结构主要是DataFrame。

函数描述|------

② 读取movies.dat数据集并输出前6条数据,此处自定义数据展示的条数。

movies.dat数据集movie_id:电影id,title:电影名称以及上映时间,genres:电影的题材。

③读取users.dat子数据集,user_id:用户id,gender:用户性别,age:用户所处的年龄段,并不是具体的年龄,occupation:用户职业,zip:邮编。

注意:若有的时候数据集列数过多,无法展示多列,出现省略号,此时可以使用pandas中的set_option()进行显示设置。

若输入的数据集较大,可能需要读入文件的一个小片段或者按照小块来遍历文件。若要读取一小部分行数据,可以指明nrows。若是分块去读数据文件,可以指明chunksize作为每一块的行数。

3、数据处理

上面展示的都是子数据的原始状态,但是在数据分析过程中,原始数据可能不满足数据分析的要求,这里做一些简单的处理。

① 去掉title中的年份

通过正则表达式去掉title中的年份

② 通过Pandas中的to_datetime函数将timestamp转换成具体时间

③ 通过rename函数更改列名,具体代码如下:

④ 将data_ratings中time列格式变成‘年-月-日’

首先使用Pandas中的to_datetime函数将date列从object格式转化为datetime格式,然后通过strftime('%Y%m%d')取出年月日,把这个函数用apply lambda应用到data_ratings[‘timestamp’]的这一列中。

4、数据合并

Pandas提供merge函数合并数据集,类似于sql中的join操作,分为可设为inner(默认内连接),outer(外连接),left(左连接),right(右连接)。将data_movies与data_ratings合并成data数据集。

上面是将两个子数据集合并,也可以多个子数据集合并,将data_movies,data_ratings与data_users一起合并成data1,可以使用两层merge函数合并数据集,也可以使用merge函数将data与data_users合并。

数据分析

1、统计变量

变量描述|------

2、分组统计

Pandas中使用groupby函数进行分组统计,groupby分组实际上就是将原有的DataFrame按照groupby的字段进行划分,groupby之后可以添加计数(count)、求和(sum)、求均值(mean)等操作。

① 统计评分最多的5部电影

首先根据电影名称进行分组,然后使用size函数计算每组样本的个数,最后采用降序的方式输出前5条观测值。

② 根据用户id统计电影评分的均值

3、分组聚合统计

Pandas提供aggregate函数实现聚合操作,可简写为agg,可以与groupby一起使用,作用是将分组后的对象使给定的计算方法重新取值,支持按照字段分别给定不同的统计方法。

按照movie_id和title进行分组,并计算评分均值,取前5个数据。

4、使用数据透视表pivot_table获得根据性别分级的每部电影的平均电影评分

数据透视表pivot_table是一种类似groupby的操作方法,常见于EXCEL中,数据透视表按列输入数据,输出时,不断细分数据形成多个维度累计信息的二维数据表。

DataFrame.pivot_table(data, values=None, index=None, columns=None,
            aggfunc='mean', fill_value=None, margins=False,
            dropna=True, margins_name='All')

index : 行索引,必要参数

values :对目标数据进行筛选,默认是全部数据,可通过values参数设置我们想要展示的数据列。

columns :透视表的列索引,非必要参数,同index使用方式一样

aggfunc :对数据聚合时进行的函数操作,默认是求平均值,也可以sum、count等

margins :额外列,默认对行列求和

fill_value : 对于空值进行填充

dropna : 默认开启去重

结合Matplotlib进行可视化分析

Pandas不仅可以以表的形式分析数据,还可以结合Matplotlib API进行可视化分析,通过import matplotlib.pyplot as plt导入到程序中,注意,在jupyter notebook中需要添加一行%matplotlib notebook。

1、认识Matplotlib

① Matplotlib常见绘图函数:

② Matplotlib绘图步骤

首先定义x,y轴数值,然后绘制图形,设置图形属性,包括颜色,线条,坐标轴范围,线条标记,设置图形标题等,最后使用plt.show( )绘制图形。

2、使用pandas 结合matplotlib绘制数据分析图

① 不同题材的电影数量柱形图

首先根据电影题材进行,然后选取票房最好的15个系列进行统计画图。

② 一年内电影评分均值的走势情况

按照时间分组,然后进行评分均值聚合统计,接着将数据绘制成折线图,便于了解影评分数均值随时间的变化情况,最后将所绘制的图形可通过savefig保存。

③ 使用直方图表示评分分布情况

根据数据呈现的评分分布直方图可见,评分为4分的数量最多

总结

通过上面的例子,可以了解Pandas在数据处理方面具有非常好的特性,它所包含的数据结构和数据处理工具使得数据清洗、数据分析十分快捷,支持大部分Numpy语言风格的数组计算,提供分组聚合统计函数,可以与可视化工具Matplotlib一起使用。

相关文章
|
17天前
|
敏捷开发 测试技术 持续交付
探索自动化测试在敏捷开发中的应用与挑战
本文深入探讨了自动化测试在现代软件开发流程,特别是敏捷开发环境中的重要作用和面临的挑战。通过分析自动化测试的基本原理、实施策略以及在实际项目中的应用案例,揭示了其在提高软件质量和加速产品交付方面的巨大潜力。同时,文章也指出了自动化测试实施过程中可能遇到的技术难题、成本考量及团队协作问题,并提出了相应的解决策略,为软件开发团队提供了有价值的参考和指导。
|
7天前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
33 11
|
22天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
65 5
|
22天前
|
编解码 测试技术 开发工具
测试 iPhone 应用在不同屏幕尺寸和分辨率下的响应式效果
【10月更文挑战第23天】测试 iPhone 应用在不同屏幕尺寸和分辨率下的响应式效果是确保应用质量和用户体验的重要环节。通过手动测试、自动化测试、视觉效果评估、性能测试、用户体验测试等多种方法的综合运用,能够全面地发现应用在响应式效果方面存在的问题,并及时进行解决和优化。同时,持续的测试和优化也是不断提升应用质量和用户满意度的关键。
|
18天前
|
数据采集 数据可视化 数据挖掘
数据驱动决策:BI工具在数据分析和业务洞察中的应用
【10月更文挑战第28天】在信息爆炸的时代,数据成为企业决策的重要依据。本文综述了商业智能(BI)工具在数据分析和业务洞察中的应用,介绍了数据整合、清洗、可视化及报告生成等功能,并结合实际案例探讨了其价值。BI工具如Tableau、Power BI、QlikView等,通过高效的数据处理和分析,助力企业提升竞争力。
34 5
|
19天前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
36 2
|
19天前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
20 1
|
20天前
|
前端开发 JavaScript 数据可视化
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第26天】前端自动化测试在现代软件开发中至关重要,Jest和Cypress分别是单元测试和端到端测试的流行工具。本文通过解答一系列问题,介绍Jest与Cypress的实战应用与最佳实践,帮助开发者提高测试效率和代码质量。
30 2
|
25天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
42 2
|
17天前
|
NoSQL 测试技术 Go
自动化测试在 Go 开源库中的应用与实践
本文介绍了 Go 语言的自动化测试及其在 `go mongox` 库中的实践。Go 语言通过 `testing` 库和 `go test` 命令提供了简洁高效的测试框架,支持单元测试、集成测试和基准测试。`go mongox` 库通过单元测试和集成测试确保与 MongoDB 交互的正确性和稳定性,使用 Docker Compose 快速搭建测试环境。文章还探讨了表驱动测试、覆盖率检查和 Mock 工具的使用,强调了自动化测试在开源库中的重要性。