【算法基础】折半查找解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 折半查找也称二分查找,是一种在有序数组中查找某一特定元素的搜索算法,每一次查找,搜索范围均缩小一半,效率较高。如果数组是乱序状态,则应排序,再进行查找。

​​> 作者:[柒号华仔]

个人信条:星光不问赶路人,岁月不负有心人。
个人方向:主要方向为5G,同时兼顾其他网络协议,编解码协议,C/C++,linux,云原生等,感兴趣的小伙伴可以关注我,一起交流。


1. 折半查找介绍

1.1 定义

折半查找也称二分查找,是一种在有序数组中查找某一特定元素的搜索算法,每一次查找,搜索范围均缩小一半,效率较高。如果数组是乱序状态,则应排序,再进行查找。

1.2 基本原理

搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半 。

1.3 时间复杂度与空间复杂度

总共有n个元素,每次查找的区间大小就是n,n/2,n/4,…,n/$2^k$,一直到1,其中k就是循环的次数。
由于n/$2 ^ k$取整后>=1,即令n/$2^k$=1,可得k=log2n,(是以2为底,n的对数),所以时间复杂度可以表示O()=O(logn)。

二分查找只需要额外存储三个变量:最大值 ,最小值 和 中点,空间复杂度为常数 O(1)。

1.4 优缺点

优点:比较次数少,查找速度快,平均性能好。
缺点:要求待查表为有序表,且插入删除困难。


2. 代码实现

2.1 代码设计

在这里插入图片描述

  1. 输入需要查找的元素,我们输入的是38;left是有序数组最左端0,是最小值,right是有序数组最右端10,是最大值,mid为数组1/2位置,即array[5];
  2. 38比array[5] = 19大,因此left等于原mid+1,即array[6] = 26,right不变;新mid为(left+right)/2 = (6+10)/2 = 8;
  3. 38比array[8] = 36大,因此left等于上一次mid+1,即array[9] = 38,right不变;新mid为(left+right)/2 = (9+10)/2 = 9;
  4. 38等于array[9],mid与left重合, 查找成功,返回数组下标9.


2.2 代码实现

#include <stdio.h>
#include <string.h>

int binarySearch(int array[],int len,int target){
    int left = 0;
    int right = len - 1;
    while(left <= right){
        int mid = (right + left) / 2;
        if(array[mid] == target){
            return mid;
        } else if(array[mid] < target){
            left = mid + 1;
        } else if(array[mid] > target){
            right = mid - 1;
        }
    }
    return -1;
}

int main(void)
{
    int array[]={2,3,4,5,15,19,26,27,36,38,45};
    int key = 0,ret;

    printf("请输入需要查找的数字:");
    scanf("%d",&key);

    ret = binarySearch(array,sizeof(array)/sizeof(int),key);
    if(ret < 0)
        printf("查找失败\n");
    else
        printf("该数字为数组第%d个元素\n",ret+1);

    return 0;
}

运行结果:

请输入需要查找的数字:38
该数字为数组第10个元素
相关文章
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
54 3
|
14天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
97 30
|
18天前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
126 15
|
2月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
70 4
|
1月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
2月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
15天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
21天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
8天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。

推荐镜像

更多