时序预测 | MATLAB实现IWOA-LSTM和LSTM时间序列预测(改进的鲸鱼算法优化长短期记忆神经网络)

简介: 时序预测 | MATLAB实现IWOA-LSTM和LSTM时间序列预测(改进的鲸鱼算法优化长短期记忆神经网络)

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

一种基于LSTM模型的股票预测方法和系统,属于股票预测技术领域.本发明技术方法通过搭建深度学习环境,爬取大型企业近期的股票数据,对股票数据进行前期分析,再提取关键特征,选取训练数据,输入训练数据,基于深度学习理论构建股票预测模型,所述股票预测模型包括一层输入层,一层隐含层和一层输出层,最后输出预测结果,结合真实值以误差百分比作为评测指标进行测评.

⛄ 部分代码


while t<Max_iter

   t

   for i=1:size(Positions,1)

       % Return back the search agents that go beyond the boundaries of the search space

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;

       % Calculate objective function for each search agen

     

      gam=Positions(i,1);

   sig2=Positions(i,2);

   model=initlssvm(train_x,train_yy,type,gam,sig2,kernel,proprecess);

   model=trainlssvm(model);

   %求出训练集和测试集的预测值

   [train_predict_y,zt,model]=simlssvm(model,train_x);

   [test_predict_y,zt,model]=simlssvm(model,test_x);

   %预测数据反归一化

   train_predict=postmnmx(train_predict_y ,miny,maxy);%预测输出

   test_predict=postmnmx(test_predict_y ,miny,maxy); %测试集预测值

   %计算均方差

   

   trainmse=sum((train_predict-train_y).^2)/length(train_y);

   testmse=sum((test_predict-test_y).^2)/length(test_y);

   fitness=trainmse; %以测试集的预测值计算的均方差为适应度值

       % Update the leader

       if fitness<Leader_score % Change this to > for maximization problem

           Leader_score=fitness; % Update alpha

           Leader_pos=Positions(i,:);%最佳参数

           YPred_best=test_predict;

       end

   end

   a=-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)

   % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)

   a2=t*((-1)/Max_iter);

   % Update the Position of search agents

   for i=1:size(Positions,1)

       r1=rand(); % r1 is a random number in [0,1]

       r2=rand(); % r2 is a random number in [0,1]

       A=2*a*r1-a;  % Eq. (2.3) in the paper

       C=2*r2;      % Eq. (2.4) in the paper

       

       b=1;               %  parameters in Eq. (2.5)

       l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)

       p = rand();        % p in Eq. (2.6)

       for j=1:size(Positions,2)

           if p<0.5

               if abs(A)>=1

                   rand_leader_index = floor(SearchAgents_no*rand()+1);

                   X_rand = Positions(rand_leader_index, :);

                   D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)

                   Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)

                   

               elseif abs(A)<1

                   D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)

                   Positions(i,j)=Leader_pos(j)-A*D_Leader;      % Eq. (2.2)

               end

               

           elseif p>=0.5

               

               distance2Leader=abs(Leader_pos(j)-Positions(i,j));

               % Eq. (2.5)

               Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);

               

           end

       end

   end

   t=t+1;

   Convergence_curve(t)=Leader_score;

   %     [t Leader_score]

end

⛄ 运行结果

⛄ 参考文献

[1]郝可青, 吕志刚, 邸若海,等. 基于鲸鱼算法优化长短时记忆神经网络的锂电池剩余寿命预测[J]. 科学技术与工程, 2022, 22(29):9.

[2]彭 燕,刘宇红,张荣芬. 基于LSTM的股票价格预测建模与分析[J]. 计算机工程与应用(209-212).

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
43 2
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
3天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
4天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
16天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
24天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
26天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。