当我们谈论算法我们在谈论什么:由疫情核酸检测想到的分治算法(Divide-and-Conquer)

简介: 解释一下病毒核酸检测的原理,检测人员提取小区居民的鼻腔拭子或者咽拭子(就是用一根棉签在咽喉处或者鼻腔深处刮取一些分泌物),然后将该棉签放入试剂盒,以病毒独特的基因序列检测靶标,通过PCR扩增,使我们选择的这段靶标DNA序列指数级增加,每一个扩增出来的DNA序列,都可与我们预先加入的一段荧光标记探针结合,产生荧光信号,扩增出来的靶基因越多,累计的荧光信号就越强。说白了就是试剂盒荧光反映变色越强烈,说明病毒体量和活性越强。

解释一下病毒核酸检测的原理,检测人员提取小区居民的鼻腔拭子或者咽拭子(就是用一根棉签在咽喉处或者鼻腔深处刮取一些分泌物),然后将该棉签放入试剂盒,以病毒独特的基因序列检测靶标,通过PCR扩增,使我们选择的这段靶标DNA序列指数级增加,每一个扩增出来的DNA序列,都可与我们预先加入的一段荧光标记探针结合,产生荧光信号,扩增出来的靶基因越多,累计的荧光信号就越强。说白了就是试剂盒荧光反映变色越强烈,说明病毒体量和活性越强。

而五人一组共用一个试剂盒测试,如果结果呈阳性,再对其中四个人分别测试即可。 由于绝大部分人都是健康的,所以这样可以提高五倍的检测量,从而检测更多的人,很明显这次检疫使用到了类似归并的“分治法”来解决问题,提高效率。

分治法,即“分而治之”,出自清·俞樾《群经平议·周官二》“巫马下士二人医四人”:“凡邦之有疾病者,疕疡者造焉,则使医分而治之,是亦不自医也。” 其核心思想是:将一个难以直接解决的大问题,分拆成一些规模较小的相同问题,随后各个击破,分而治之。可以理解为:如果原问题可以分割成n个子问题,1<n<=原问题,且这些子问题均可解并且利用这些子问题的解求出原问题的解,那么分治方法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归算法提供了遍历。反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归的使用。所以分治与递归经常同时应用在算法解决方案中。

核酸检测正好契合分治算法的使用场景:该问题的规模只要缩小到一定的规模就可以容易的解决。该问题可以分解为若干个规模较小的相同问题(检测是否阳性)。

而我们在技术面试中,可以利用分治算法解决的经典问题如下:

归并排序

def merge_sort(lst):  
    # 从递归中返回长度为1的序列  
    if len(lst) <= 1:  
        return lst            
  
    middle = len(lst) / 2  
    # 1.分解:通过不断递归,将原始序列拆分成 n 个小序列  
    left = merge_sort(lst[:middle])       
    right = merge_sort(lst[middle:])  
    # 进行排序与合并  
    return merge(left, right)  
  
def merge(left, right):  
    i, j = 0, 0  
    result = []  
    # 2.解决:比较传入的两个子序列,对两个子序列进行排序  
    while i < len(left) and j < len(right):    
        if left[i] <= right[j]:  
            result.append(left[i])  
            i += 1  
        else:  
            result.append(right[j])  
            j += 1  
    # 3.合并:将排好序的子序列合并  
    result.extend(left[i:])           
    result.extend(right[j:])  
    return result

快速排序

def quickSort(listx):  
    if len(listx)<=1:  
        return listx  
    pivot = listx[len(listx)//2]              #取列表中中间的元素为被比较数pivot  
    listl = [x for x in listx if x < pivot]   #<pivot的放在一个列表  
    listm = [x for x in listx if x ==pivot]   #=pivot的放在一个列表  
    listr = [x for x in listx if x > pivot]   #>pivot的放在一个列表  
    left = quickSort(listl)                   #递归进行该函数  
    right = quickSort(listr)                  #递归进行该函数  
    return left + listm + right               #整合  
print(quickSort([9,3, 6, 8, 9, 19, 1, 5]))     #[1, 3, 5, 6, 8, 9, 9, 19]

折半查找

def binary_search(lis, key):  
  low = 0  
  high = len(lis) - 1  
  time = 0  
  while low < high:  
    time += 1  
    mid = int((low + high) / 2)  
    if key < lis[mid]:  
      high = mid - 1  
    elif key > lis[mid]:  
      low = mid + 1  
    else:  
      # 打印折半的次数  
      print("times: %s" % time)  
      return mid  
  print("times: %s" % time)  
  return False

二叉树的最大深度问题

class Solution(object):  
    def maxDepth(self, root):  
        """  
        :type root: TreeNode  
        :rtype: int  
        """  
        if not root:  
            return 0  
        left = self.maxDepth(root.left) + 1  
        right = self.maxDepth(root.right) + 1  
        return left if left > right else right

计算x 的 n 次幂问题

class Solution(object):  
    def myPow(self, x, n):  
        """  
        :type x: float  
        :type n: int  
        :rtype: float  
        """  
        if not n:  
            return 1  
        if n < 0:  
            return 1 / self.myPow(x, -n)  
        if n % 2:  
            return (x * self.myPow(x, n - 1))  
        return self.myPow(x * x, int(n / 2))

当然了,分治算法也并非无懈可击,回到核酸检测的场景,这种做法在最乐观情况下,的的确确是提升了五倍的效率,但是在最不乐观情况下,反而会增大工作量。如果在检测这些人中一个感染的患者都没有,那就是最乐观情况,5人一组检查一遍就OK了;如果这群人全部(正确来讲是在分组后的每一组中都有至少一个)感染人员,这种极端恶劣的情况下会导致至少增加分组数量的工作量,所以根本问题又变成了在假设一定感染率的情况下,如何确定多少个样本一组检测比较好。考虑的因素可能包括,检测效率,费用,有阳性的时候快速定位等。实际监测的时候,还可以不同地区不同的检测策略,监测策略也可以根据检测结果调整。

结语:算法其实在生活中无处不在,很多同学出去面试时往往惧怕做算法题,其实算法也不过就是一种解决问题的方法,目的也仅仅是为了提高效率,如果在生活中多观察、多思考,也许会对算法能力的提升有一定的帮助。

相关文章
|
20天前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
27天前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
217 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
17天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
4月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
357 1
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
106 0
|
8月前
|
算法 搜索推荐 Java
算法系列之分治算法
分治算法(Divide and Conquer)是一种解决复杂问题的非常实用的策略,广泛应用于计算机科学中的各个领域。它的核心思想是将一个复杂的问题分解成若干个相同或相似的子问题,递归地解决这些子问题,然后将子问题的解合并,最终得到原问题的解。分治算法的典型应用包括归并排序、快速排序、二分查找等。
260 72
 算法系列之分治算法
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
222 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
4月前
|
机器学习/深度学习 监控 算法
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
90 0
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
7月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。

热门文章

最新文章