m基于NSGAII优化算法的微网系统的多目标优化规划matlab仿真

简介: m基于NSGAII优化算法的微网系统的多目标优化规划matlab仿真

1.算法描述

   NSGA-II是基于的非支配排序的方法,在NSGA上进行改进,也是多目标进化优化领域一个里程碑式的一个算法。

  NSGA-Ⅱ算法是 Srinivas 和 Deb 于 2000 年在 NSGA 的基础上提出的,它比 NSGA算法更加优越:它采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低;采用了拥挤度和拥挤度比较算子,代替了需要指定的共享半径 shareQ,并在快速排序后的同级比较中作为胜出标准,使准 Pareto 域中的个体能扩展到整个 Pareto 域,并均匀分布,保持了种群的多样性;引入了精英策略,扩大了采样空间,防止最佳个体的丢失,提高了算法的运算速度和鲁棒性。

   NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:

①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;

②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;

③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。

  在NSGA-中,将进化群体按支配时关系分为若干层,第一层为进化群体的非支配个体集合,第二层为在进化群体中去掉第一层个体后所求得的非支配个体集合,第三层为在进化群体中去掉第一层和第二层个体后所求得的非支配个体集合,依此类推。选择操作首先考虑第一层非支配集,按照某种策略从第一层中选取个体;然后再考虑在第二层非支配个体集合中选择个体,依此类推,直至满足新进化群体的大小要求。

2.仿真效果预览
matlab2022a仿真结果如下:

1.png
2.png
3.png

3.MATLAB核心程序

Len     = 876;
[WindDataPV,SolarDataPVR,LoadDataPV] = ReadLocalClimaticData(Len);
%初始化参数
popnum         = 120;
gen            = 100;
%变量取值范围
xmin           = 0;
xmax           = 1;
%目标函数个数
m              = 3; 
%决策变量数目
n              = 30;
%交叉变异参数
hc             = 15;
hm             = 15;
%产生初始种群
initpop        = rand(popnum,n)*(xmax-xmin)+xmin;
init_value_pop = value_objective(initpop,m,n);
 
%画图显示初始图
figure 
plot(init_value_pop(:,n+1),init_value_pop(:,n+m),'B+')
pause(.1)
 
%非支配排序和聚集距离计算
[non_dominant_sort_pop,rankinfo] = non_dominant_sort(init_value_pop,m,n);
ns_dc_pop                        = crowding_distance(non_dominant_sort_pop,m,n,rankinfo);
%选择,交叉,变异产生下一个子代
%选择进行交叉变异的个数
poolsize   = round(popnum/2);
%选择锦标赛的元度
toursize   = 2;
select_pop = selection(ns_dc_pop,poolsize,toursize,m,n);
%存储交叉变异相关参数
hc         = 20;
hm         = 20;
offspring  = genetic_operate(select_pop,m,n,hc,hm,xmax,xmin);
 
%循环开始
t=1;
while t<=gen
      t
      %合并种群(2N),进入循环
      combine_pop(1:popnum,1:m+n+2)              = ns_dc_pop;
      [xsize,ysize]                              = size(offspring);
      combine_pop(popnum+1:popnum+xsize,1:m+n+2) = offspring;
      %重新进行非支配排序和聚焦距离计算
      [gen_non_dominant_pop,rankinfo]            = non_dominant_sort(combine_pop,m,n);
      nsdc_pop                                   = crowding_distance(gen_non_dominant_pop,m,n,rankinfo);
      %选择下一代的产生(然后用于交叉变异)
      ns_dc_pop                                  = generate_offsprings(nsdc_pop,m,n,popnum);
      %显示下一代的情况N_decision_var
      if m==2 
         plot(ns_dc_pop(:,n+1),ns_dc_pop(:,n+2),'r*')
      elseif m==3  
         plot3(ns_dc_pop(:,n+1),ns_dc_pop(:,n+2),ns_dc_pop(:,n+3),'kd')  
         xlabel('Function 1');
         ylabel('Function 2');
         zlabel('Function 3');
         view([44,34]); 
      end
     grid on;
     text(0,0,0,['第 ',int2str(t),' 代']);
     pause(0.1)    
 
     %选择,交叉,变异产生下一个子代
     poolsize   = round(popnum/2);%选择进行交叉变异的个数
     toursize   = 2;%选择锦标赛的元度
     select_pop = selection(ns_dc_pop,poolsize,toursize,m,n);
     hc         = 20;%存储交叉变异相关参数
     hm         = 20;
     offspring  = genetic_operate(select_pop,m,n,hc,hm,xmax,xmin);
     t          = t+1;
end
%显示标题
02_033m
相关文章
|
14小时前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
25天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
21天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
22天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。

热门文章

最新文章