m基于NSGAII优化算法的微网系统的多目标优化规划matlab仿真

简介: m基于NSGAII优化算法的微网系统的多目标优化规划matlab仿真

1.算法描述

   NSGA-II是基于的非支配排序的方法,在NSGA上进行改进,也是多目标进化优化领域一个里程碑式的一个算法。

  NSGA-Ⅱ算法是 Srinivas 和 Deb 于 2000 年在 NSGA 的基础上提出的,它比 NSGA算法更加优越:它采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低;采用了拥挤度和拥挤度比较算子,代替了需要指定的共享半径 shareQ,并在快速排序后的同级比较中作为胜出标准,使准 Pareto 域中的个体能扩展到整个 Pareto 域,并均匀分布,保持了种群的多样性;引入了精英策略,扩大了采样空间,防止最佳个体的丢失,提高了算法的运算速度和鲁棒性。

   NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:

①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;

②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;

③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。

  在NSGA-中,将进化群体按支配时关系分为若干层,第一层为进化群体的非支配个体集合,第二层为在进化群体中去掉第一层个体后所求得的非支配个体集合,第三层为在进化群体中去掉第一层和第二层个体后所求得的非支配个体集合,依此类推。选择操作首先考虑第一层非支配集,按照某种策略从第一层中选取个体;然后再考虑在第二层非支配个体集合中选择个体,依此类推,直至满足新进化群体的大小要求。

2.仿真效果预览
matlab2022a仿真结果如下:

1.png
2.png
3.png

3.MATLAB核心程序

Len     = 876;
[WindDataPV,SolarDataPVR,LoadDataPV] = ReadLocalClimaticData(Len);
%初始化参数
popnum         = 120;
gen            = 100;
%变量取值范围
xmin           = 0;
xmax           = 1;
%目标函数个数
m              = 3; 
%决策变量数目
n              = 30;
%交叉变异参数
hc             = 15;
hm             = 15;
%产生初始种群
initpop        = rand(popnum,n)*(xmax-xmin)+xmin;
init_value_pop = value_objective(initpop,m,n);
 
%画图显示初始图
figure 
plot(init_value_pop(:,n+1),init_value_pop(:,n+m),'B+')
pause(.1)
 
%非支配排序和聚集距离计算
[non_dominant_sort_pop,rankinfo] = non_dominant_sort(init_value_pop,m,n);
ns_dc_pop                        = crowding_distance(non_dominant_sort_pop,m,n,rankinfo);
%选择,交叉,变异产生下一个子代
%选择进行交叉变异的个数
poolsize   = round(popnum/2);
%选择锦标赛的元度
toursize   = 2;
select_pop = selection(ns_dc_pop,poolsize,toursize,m,n);
%存储交叉变异相关参数
hc         = 20;
hm         = 20;
offspring  = genetic_operate(select_pop,m,n,hc,hm,xmax,xmin);
 
%循环开始
t=1;
while t<=gen
      t
      %合并种群(2N),进入循环
      combine_pop(1:popnum,1:m+n+2)              = ns_dc_pop;
      [xsize,ysize]                              = size(offspring);
      combine_pop(popnum+1:popnum+xsize,1:m+n+2) = offspring;
      %重新进行非支配排序和聚焦距离计算
      [gen_non_dominant_pop,rankinfo]            = non_dominant_sort(combine_pop,m,n);
      nsdc_pop                                   = crowding_distance(gen_non_dominant_pop,m,n,rankinfo);
      %选择下一代的产生(然后用于交叉变异)
      ns_dc_pop                                  = generate_offsprings(nsdc_pop,m,n,popnum);
      %显示下一代的情况N_decision_var
      if m==2 
         plot(ns_dc_pop(:,n+1),ns_dc_pop(:,n+2),'r*')
      elseif m==3  
         plot3(ns_dc_pop(:,n+1),ns_dc_pop(:,n+2),ns_dc_pop(:,n+3),'kd')  
         xlabel('Function 1');
         ylabel('Function 2');
         zlabel('Function 3');
         view([44,34]); 
      end
     grid on;
     text(0,0,0,['第 ',int2str(t),' 代']);
     pause(0.1)    
 
     %选择,交叉,变异产生下一个子代
     poolsize   = round(popnum/2);%选择进行交叉变异的个数
     toursize   = 2;%选择锦标赛的元度
     select_pop = selection(ns_dc_pop,poolsize,toursize,m,n);
     hc         = 20;%存储交叉变异相关参数
     hm         = 20;
     offspring  = genetic_operate(select_pop,m,n,hc,hm,xmax,xmin);
     t          = t+1;
end
%显示标题
02_033m
相关文章
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
12天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
31 3
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
23天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。