【电力系统经济调度】多元宇宙算法求解电力系统多目标优化问题(Matlab实现)【电气期刊论文复现】

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【电力系统经济调度】多元宇宙算法求解电力系统多目标优化问题(Matlab实现)【电气期刊论文复现】

 目录

0 概述

1 环境经济调度数学模型

2 多元宇宙算法

3 运行结果

4 Matlab代码实现


image.gif

目录

0 概述

1 环境经济调度数学模型

2 多元宇宙算法

3 Matlab代码实现

3.1 主函数:

3.2 目标函数

4 运行结果

image.gif

0 概述

多元宇宙算法求解电力系统多目标优化算法有很好的效果,代码换成自己的目标函数,加上约束和惩罚项等。本文用多元宇宙算法求解电力系统多目标优化问题——电力系统环境经济调度问题。

image.gif

image.gif

提出了一种求解电力系统环境经济调度的新方法,该方法利用宇宙空间在随机创建过程中高膨胀率的物体随虫洞在空间移动物体的规律,通过对白洞和黑洞间随机传送物体来实现最优搜索. 算法具有运算速度快,收敛性强,适用于高维计算等特点.以总燃料费用最低和总污染排放最少为多目标建立环境经济调度模型,最后,通过发电厂传统10机组和40机组算例进行仿真.结果表明:本文所提算法具有经济性和有效性.

1 环境经济调度数学模型

image.gif

image.gif

2 多元宇宙算法

image.gif

image.gifimage.gif

3 运行结果

10机组运行结果:

image.gif

image.gif

image.gif

image.gif

本文提出了一种求解电力系统环境经济调度的新方法,计及阀点效应和污染排放因素,建立多目标规划模型,利用PPF定价原则权衡多重因素. 多元宇宙算法在求解EED问题时具有计算精度高,收敛速度快等特点,在求解高维度问题表现更佳,适用于其他工程问题研究.

🎉作者研究:🏅🏅🏅主要研究方向是电力系统和智能算法、机器学习和深度学习。目前熟悉python网页爬虫、机器学习、群智能算法、深度学习的相关内容。希望将计算机和电网有效结合!⭐️⭐️⭐️

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者,博主专门做了一个专栏目录,整个专栏只放了一篇文章,足见我对其重视程度,做到极度细致,方便大家进行学习!亲民!!!还有我开了一个专栏给女朋友的,很浪漫的喔,有问题可以私密博主,博主看到会在第一时间回复。

📝目前更新:🌟🌟🌟电力系统相关知识,期刊论文,算法,机器学习和人工智能学习。

🚀支持:🎁🎁🎁如果觉得博主的文章还不错或者您用得到的话,可以关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

                                                           

👨‍🎓博主课外兴趣:中西方哲学,送予读者:

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。

    或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

4 Matlab代码实现

完整代码:https://mbd.pub/o/bread/YpuWmJxr

image.gif

clc;
clear;
close all;
tStart=tic;
% global costdata emissiondata B B0 B00 Pd VarMin VarMax nVar
global data B B0 B00 Pd VarMin VarMax nVar
Pd=2000;
data=xlsread('IEEE10.xls');
B1=xlsread('B10.xls');
B=B1(1:10,1:10);
B0=[0 0 0 0 0 0 0 0 0 0];
B00=0;
%  B=B1(1:3,1:3);
%  B0=[0 0 0 0 0 0 0 0 0 0];
%  B00=0;
%%
Max_time=600; %迭代次数
N=100;
ArchiveMaxSize=100;
% max_iter=Max_time;
 nVar=10;             % 机组个数
VarSize=[1 nVar];   % 决策变量矩阵的大小
VarMin=data(:,2);          %机组出力下限
VarMax= data(:,3);          % 机组出力上限
fobj=@(x) IEEE3aobj(x);
dim=nVar;
lb=VarMin';
ub=VarMax';
obj_no=2;
Best_universe=zeros(1,dim);
Best_universe_Inflation_rate=inf*ones(1,obj_no);
Archive_X=zeros(ArchiveMaxSize,dim);
Archive_F=ones(ArchiveMaxSize,obj_no)*inf;
Archive_member_no=0;
WEP_Max=1;
WEP_Min=0.2;
for i=1:N
   Universes(i,:)=lcheck3; 
end
Time=1;
while Time<Max_time+1
    WEP=WEP_Min+Time*((WEP_Max-WEP_Min)/Max_time);
    TDR=1-((Time)^(1/6)/(Max_time)^(1/6));
    for i=1:size(Universes,1)
        %边界检查(如果宇宙超出边界,则将它们带回搜索空间内)
        Flag4ub=Universes(i,:)>ub;
        Flag4lb=Universes(i,:)<lb;
        Universes(i,:)=(Universes(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        Universes(i,:)=lbcoff3bus(Universes(i,:));
        %计算宇宙的通货膨胀率(适合度)
        Inflation_rates(i,:)=fobj(Universes(i,:));
        %精英主义
        if dominates(Inflation_rates(i,:),Best_universe_Inflation_rate)
            Best_universe_Inflation_rate=Inflation_rates(i,:);
            Best_universe=Universes(i,:);
        end
    end
    [sorted_Inflation_rates,sorted_indexes]=sort(Inflation_rates);
    for newindex=1:N
        Sorted_universes(newindex,:)=Universes(sorted_indexes(newindex),:);
    end
    %原始MVO论文中的标准化通货膨胀率
    normalized_sorted_Inflation_rates=normr(sorted_Inflation_rates);
    Universes(1,:)= Sorted_universes(1,:);
%     Universes(1,:)=lchecktf1(Universes(1,:));
    [Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, Universes, Inflation_rates, Archive_member_no);
    if Archive_member_no>ArchiveMaxSize
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
        [Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
    else
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    end
    Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    % 提高复盖率
    index=RouletteWheelSelection(1./Archive_mem_ranks);
    if index==-1
        index=1;
    end
   Best_universe_Inflation_rate=Archive_F(index,:);
   Best_universe=Archive_X(index,:); 
    %更新宇宙的位置
    for i=2:size(Universes,1)%从2开始,因为第1位是精英
        Back_hole_index=i;
        for j=1:size(Universes,2)
            r1=rand();
            if r1<normalized_sorted_Inflation_rates(i)
                White_hole_index=RouletteWheelSelection(-sorted_Inflation_rates);% 对于最大化问题,排序的通货膨胀率应该写成排序的通货膨胀率
                if White_hole_index==-1
                    White_hole_index=1;
                end
                %Eq. (3.1) 
                Universes(Back_hole_index,j)=Sorted_universes(White_hole_index,j);
%                 Universes(Back_hole_index,j)=lchecktf1(Universes(Back_hole_index,j));
            end
            if (size(lb',1)==1)
                %如果边界都是一样的,那么原MVO论文中的公式(3.2)就会出现
                r2=rand();
                if r2<WEP
                    r3=rand();
                    if r3<0.5
                        Universes(i,j)=Best_universe(1,j)+TDR*((ub-lb)*rand+lb);
                    end
                    if r3>0.5
                        Universes(i,j)=Best_universe(1,j)-TDR*((ub-lb)*rand+lb);
                    end
                end
            end
            if (size(lb',1)~=1)
            %公式( 3.2 )在原始MVO论文中,如果对每个变量的上下界不同
                r2=rand();
                if r2<WEP
                    r3=rand();
                    if r3<0.5
                        Universes(i,j)=Best_universe(1,j)+TDR*((ub(j)-lb(j))*rand+lb(j));
                    end
                    if r3>0.5
                        Universes(i,j)=Best_universe(1,j)-TDR*((ub(j)-lb(j))*rand+lb(j));
                    end
                end
            end
        end
        Universes(i,:)=lbcoff3bus(Universes(i,:));
    end
    display(['At the iteration ', num2str(Time), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
    Time=Time+1;
%
end
plot(Archive_F(:,1),Archive_F(:,2),'Ro','LineWidth',2,...
        'MarkerEdgeColor','r',...
        'MarkerFaceColor','r',...
        'MarkerSize',2);
xlabel('污染排放量')
ylabel('煤耗量')
title('Pareto最前沿')
% Universes
Archive_F(:,1)
Archive_F(:,2)
Best_universe

image.gif


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
210 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
144 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
156 8
|
2月前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
154 12
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
136 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
113 0

热门文章

最新文章