CV学习笔记-BP神经网络代码Python实例

简介: CV学习笔记-BP神经网络代码Python实例

CV学习笔记-BP神经网络代码Python实例

一. 任务描述

给定数据集(txt文件),采用随机梯度下降的方式进行神经网络的学习,完成权重参数的更新,使得输入的数据能够接近输出label。

关于BP神经网络的手推和原理见笔者《CV学习笔记-推理和训练》《CV学习笔记-BP神经网络》

txt文件类似下图所示

2018122814580746.png

col1 col2 col3
输入1 输入2 label

二. 程序设计

1. 神经网络设计

NeuralNetWork

类内初始化: __init__用以设置神经网络的参数(输入层参数、隐藏层参数、输出层参数、学习率)

类内方法: train用于训练数据,更新权重

读取数据: loadDataSet用于在txt文件中读取数据,包括输入值和label值

随机梯度下降处理: stocGradDescent用于处理训练数据的过程

2. 具体设计

  • NeuralNetWork类
class NeuralNetWork:
    def __init__(self, input_nodes, hidden_nodes, out_nodes, lr):
      # 设置输入个数
        self.innodes = input_nodes
        # 设置隐藏层节点个数
        self.hnodes = hidden_nodes
        # 设置输出节点个数
        self.onodes = out_nodes
        # 设置学习率,用于反向更新
        self.lr = lr
        # self.weight_i2h = np.ones((self.hnodes, self.innodes))
        # self.weight_h2o = np.ones((self.onodes, self.hnodes))
        # 随机初始化比1矩阵效果要好很多
        # 权重矩阵(输入到隐藏)
        self.weight_i2h = (numpy.random.normal(0.0, pow(self.hnodes,-0.5), (self.hnodes,self.innodes) )  )
        # 权重矩阵(隐藏到输出)
        self.weight_h2o = (numpy.random.normal(0.0, pow(self.onodes,-0.5), (self.onodes,self.hnodes) )  )
        # 设置激活函数(sigmoid)
        self.activation_function = lambda x: 1.0/(1+np.exp(-x))
        pass
  '''
  训练方法,输入一次训练的输入和label
  '''
    def train(self, inputs_list, targets_list):
        inputs = numpy.array(inputs_list, ndmin=2).T
        target = np.array(targets_list, ndmin=2).T
        # wx+b
        hidden_inputs = np.dot(self.weight_i2h, inputs)
        # 激活作为隐藏层的输出
        hidden_outputs = self.activation_function(hidden_inputs)
        # wx+b
        o_inputs = np.dot(self.weight_h2o, hidden_outputs)
        # 激活作为输出
        o_outputs = self.activation_function(o_inputs)
        # 损失函数
        loss = (target - o_outputs) ** 2 * 0.5
        # 输出误差,用于反向更新
        error = target - o_outputs
        # error = target - o_outputs
        # 隐藏层误差,用于反向更新
        hidden_error = np.dot(self.weight_h2o.T, error * o_outputs * (1 - o_outputs))
        # 梯度
        gradO = error * o_outputs * (1 - o_outputs)
        # 反向更新,详见笔者博客[《CV学习笔记-BP神经网络》(https://blog.csdn.net/qq_38853759/article/details/121930413)
        self.weight_h2o += self.lr * np.dot((error * o_outputs * (1 - o_outputs)), np.transpose(hidden_outputs))
        gradI = hidden_error * hidden_outputs * (1 - hidden_outputs)
        # 反向更新
        self.weight_i2h += self.lr * np.dot((hidden_error * hidden_outputs * (1 - hidden_outputs)),
                                            np.transpose(inputs))
        return loss
  • 读取数据集并处理
def loadDataSet():
    data = []
    label = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        data.append([1.0, float(lineArr[0]), float(lineArr[1])])
        label.append(int(lineArr[2]))
    data = np.array(data)
    label = np.array(label)
    return data, label
  • 训练过程处理
def stocGradDescent(data, label):
    m, n = np.shape(data)
    for iter in range(200):
        total_loss = 0
        for i in range(m):
            # if label[i] == 1:
            #     pass
            # elif label[i] == 0:
            #     pass
            # 累计每个epoch的loss观察效果
            total_loss += net.train(data[i], label[i])
        print("NO.{} Loss={}".format(iter, total_loss))

三、实践代码

import numpy
import numpy as np
class NeuralNetWork:
    def __init__(self, input_nodes, hidden_nodes, out_nodes, lr):
        self.innodes = input_nodes
        self.hnodes = hidden_nodes
        self.onodes = out_nodes
        self.lr = lr
        # self.weight_i2h = np.ones((self.hnodes, self.innodes))
        # self.weight_h2o = np.ones((self.onodes, self.hnodes))
        # 随机初始化比1矩阵效果要好很多
        self.weight_i2h = (numpy.random.normal(0.0, pow(self.hnodes,-0.5), (self.hnodes,self.innodes) )  )
        self.weight_h2o = (numpy.random.normal(0.0, pow(self.onodes,-0.5), (self.onodes,self.hnodes) )  )
        self.activation_function = lambda x: 1.0/(1+np.exp(-x))
        pass
    def train(self, inputs_list, targets_list):
        inputs = numpy.array(inputs_list, ndmin=2).T
        target = np.array(targets_list, ndmin=2).T
        hidden_inputs = np.dot(self.weight_i2h, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)
        o_inputs = np.dot(self.weight_h2o, hidden_outputs)
        o_outputs = self.activation_function(o_inputs)
        loss = (target - o_outputs) ** 2 * 0.5
        error = target - o_outputs
        # error = target - o_outputs
        hidden_error = np.dot(self.weight_h2o.T, error * o_outputs * (1 - o_outputs))
        gradO = error * o_outputs * (1 - o_outputs)
        self.weight_h2o += self.lr * np.dot((error * o_outputs * (1 - o_outputs)), np.transpose(hidden_outputs))
        gradI = hidden_error * hidden_outputs * (1 - hidden_outputs)
        self.weight_i2h += self.lr * np.dot((hidden_error * hidden_outputs * (1 - hidden_outputs)),
                                            np.transpose(inputs))
        return loss
# 从testSet.txt中读取数据存储至样本集data和标签集label
def loadDataSet():
    data = []
    label = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        data.append([1.0, float(lineArr[0]), float(lineArr[1])])
        label.append(int(lineArr[2]))
    data = np.array(data)
    label = np.array(label)
    return data, label
def stocGradDescent(data, label):
    m, n = np.shape(data)
    for iter in range(200):
        total_loss = 0
        for i in range(m):
            # if label[i] == 1:
            #     pass
            # elif label[i] == 0:
            #     pass
            total_loss += net.train(data[i], label[i])
        print("NO.{} Loss={}".format(iter, total_loss))
if __name__ == '__main__':
    input_nodes = 3
    hidden_nodes = 3
    output_nodes = 1
    learning_rate = 0.1
    net = NeuralNetWork(input_nodes, hidden_nodes, output_nodes, learning_rate)
    data, label = loadDataSet()
    stocGradDescent(data, label)
    print(net.weight_i2h)
    print(net.weight_h2o)
    pass

txt文本文件内容请自行复制

-0.017612 14.053064 0
-1.395634 4.662541  1
-0.752157 6.538620  0
-1.322371 7.152853  0
0.423363  11.054677 0
0.406704  7.067335  1
0.667394  12.741452 0
-2.460150 6.866805  1
0.569411  9.548755  0
-0.026632 10.427743 0
0.850433  6.920334  1
1.347183  13.175500 0
1.176813  3.167020  1
-1.781871 9.097953  0
-0.566606 5.749003  1
0.931635  1.589505  1
-0.024205 6.151823  1
-0.036453 2.690988  1
-0.196949 0.444165  1
1.014459  5.754399  1
1.985298  3.230619  1
-1.693453 -0.557540 1
-0.576525 11.778922 0
-0.346811 -1.678730 1
-2.124484 2.672471  1
1.217916  9.597015  0
-0.733928 9.098687  0
-3.642001 -1.618087 1
0.315985  3.523953  1
1.416614  9.619232  0
-0.386323 3.989286  1
0.556921  8.294984  1
1.224863  11.587360 0
-1.347803 -2.406051 1
1.196604  4.951851  1
0.275221  9.543647  0
0.470575  9.332488  0
-1.889567 9.542662  0
-1.527893 12.150579 0
-1.185247 11.309318 0
-0.445678 3.297303  1
1.042222  6.105155  1
-0.618787 10.320986 0
1.152083  0.548467  1
0.828534  2.676045  1
-1.237728 10.549033 0
-0.683565 -2.166125 1
0.229456  5.921938  1
-0.959885 11.555336 0
0.492911  10.993324 0
0.184992  8.721488  0
-0.355715 10.325976 0
-0.397822 8.058397  0
0.824839  13.730343 0
1.507278  5.027866  1
0.099671  6.835839  1
-0.344008 10.717485 0
1.785928  7.718645  1
-0.918801 11.560217 0
-0.364009 4.747300  1
-0.841722 4.119083  1
0.490426  1.960539  1
-0.007194 9.075792  0
0.356107  12.447863 0
0.342578  12.281162 0
-0.810823 -1.466018 1
2.530777  6.476801  1
1.296683  11.607559 0
0.475487  12.040035 0
-0.783277 11.009725 0
0.074798  11.023650 0
-1.337472 0.468339  1
-0.102781 13.763651 0
-0.147324 2.874846  1
0.518389  9.887035  0
1.015399  7.571882  0
-1.658086 -0.027255 1
1.319944  2.171228  1
2.056216  5.019981  1
-0.851633 4.375691  1
-1.510047 6.061992  0
-1.076637 -3.181888 1
1.821096  10.283990 0
3.010150  8.401766  1
-1.099458 1.688274  1
-0.834872 -1.733869 1
-0.846637 3.849075  1
1.400102  12.628781 0
1.752842  5.468166  1
0.078557  0.059736  1
0.089392  -0.715300 1
1.825662  12.693808 0
0.197445  9.744638  0
0.126117  0.922311  1
-0.679797 1.220530  1
0.677983  2.556666  1
0.761349  10.693862 0
-2.168791 0.143632  1
1.388610  9.341997  0
0.317029  14.739025 0

四、 效果测试

2018122814580746.png

通过debug看效果:

可见刚开始网络的输出跟label的差距还是很大

2018122814580746.png

可以看到训练到一百多代的时候loss已经有了明显的下降

2018122814580746.png

此时debug看效果,可以看到效果明显改善,网络的输出已经比较小接近于真实label:0了

2018122814580746.png

label为1的效果也靠谱很多了

2018122814580746.png

最后打印出权重参数:

2018122814580746.png

相关文章
|
10天前
|
机器学习/深度学习 自然语言处理 并行计算
社区供稿 | Para-Former:DUAT理论指导下的CV神经网络并行化,提速多层模型推理
神经网络正越来越多地朝着使用大数据训练大型模型的方向发展,这种解决方案在许多任务中展现出了卓越的性能。然而,这种方法也引入了一个迫切需要解决的问题:当前的深度学习模型基于串行计算,这意味着随着网络层数的增加,训练和推理时间也会随之增长。
|
3月前
|
网络协议 Java Linux
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
本文介绍了PyAV库,它是FFmpeg的Python绑定,提供了底层库的全部功能和控制。文章详细讲解了PyAV的安装过程,包括在Windows、Linux和ARM平台上的安装步骤,以及安装中可能遇到的错误和解决方法。此外,还解释了时间戳的概念,包括RTP、NTP、PTS和DTS,并提供了Python代码示例,展示如何获取RTSP流中的各种时间戳。最后,文章还提供了一些附录,包括Python通过NTP同步获取时间的方法和使用PyAV访问网络视频流的技巧。
578 4
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
|
3月前
|
Python
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
使用Python的socket库实现客户端到服务器端的图片传输,包括客户端和服务器端的代码实现,以及传输结果的展示。
187 3
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
|
3月前
|
JSON 数据格式 Python
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
本文介绍了如何使用Python的socket模块实现客户端到服务器端的文件传输,包括客户端发送文件信息和内容,服务器端接收并保存文件的完整过程。
209 1
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
|
3月前
|
关系型数据库 MySQL 数据库
Mysql学习笔记(四):Python与Mysql交互--实现增删改查
如何使用Python与MySQL数据库进行交互,实现增删改查等基本操作的教程。
77 1
|
3月前
|
Ubuntu Linux Python
Ubuntu学习笔记(六):ubuntu切换Anaconda和系统自带Python
本文介绍了在Ubuntu系统中切换Anaconda和系统自带Python的方法。方法1涉及编辑~/.bashrc和/etc/profile文件,更新Anaconda的路径。方法2提供了详细的步骤指导,帮助用户在Anaconda和系统自带Python之间进行切换。
162 1
|
3月前
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
83 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。