【机组组合】基于Benders分解算法解决混合整数规划问题——机组组合问题(Matlab代码实现)

简介: 【机组组合】基于Benders分解算法解决混合整数规划问题——机组组合问题(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1.1 问题描述

1.2 数学符号

1.3 数学模型

1.4 整体数学模型

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


image.gif

💥1 概述

1.1 问题描述

在电力系统中,高效的资源调度,对于在集中式或竞争性环境中实现经济可靠的能源生产和系统运行是必要的。

机组组合 (Unit Commitment, UC)优化问题旨在于电力系统运行时,给定以及调整发电机组的启停状态以及实时出力,使发电机组的总运行成本最小,且满足一定的安全技术约束 [1],包括发电机出力约束、启停时间约束、启停状态逻辑约束和功率平衡约束等。

1.2 数学符号

image.gif

image.gif

1.3 数学模型

1.3.1 目标函数

image.gif

1.3.2 约束条件

机组出力约束

image.gif

启停时间约束

image.gif

image.gif

启停状态逻辑约束

image.gif

image.gif

功率平衡约束

image.gif

1.4 整体数学模型

📚2 运行结果

image.gif

  部分代码:

 %% Step 3: Solve MP2 to obtain a new lower bound solution z_LB w.r.t. y_hat

   r_MP=gurobi(MP,MP.params);

   assign(recover(r_model.used_variables(Ind_y)),r_MP.x(2:end)); % exclude varialbe z in MP

   s_u_BD((3*iter-2):3*iter,:)=value(u);

   s_v_BD((3*iter-2):3*iter,:)=value(v);

   s_w_BD((3*iter-2):3*iter,:)=value(w);

   z_LB=r_MP.objval;

   iter=iter+1;

%     abs_error=abs((z_UB-z_LB)/z_UB);

%     display(['Upper Bound: ', num2str(z_UB),'  Lower Bound: ', num2str(z_LB),'  Gap: ',num2str(round(abs_error*100,2)),'%']);

end

t_BD_e = toc(t_BD_s);  

display(['采用Gurobi+benders分解所用计算时间: ',num2str(round(t_BD_e,2)),' s']);

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] G. Morales-España, J. M. Latorre and A. Ramos, ”Tight and Compact MILP Formulation

for the Thermal Unit Commitment Problem,” in IEEE Transactions on Power Systems,

vol. 28, no. 4, pp. 4897-4908, Nov. 2013, doi: 10.1109/TPWRS.2013.22514

🌈4 Matlab代码实现

链接:https://pan.baidu.com/s/1_3F1iNePbQAuvSS3iovDVA 

提取码:3tel

--来自百度网盘超级会员V3的分享

相关文章
|
18天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
101 8
|
18天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
|
18天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
27天前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
95 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
164 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)

热门文章

最新文章