【pytorch深度学习实践】笔记—03.2.随机梯度下降

简介: 【pytorch深度学习实践】笔记—03.2.随机梯度下降

1.背景及思路

【思想】

1.使用梯度下降是可以解决大多数问题的,但是遇到“鞍点”问题无法解决。

2.使用梯度下降更新权重w的时候,对于每一个w,计算cost损失、计算梯度的时候,都要对所有样本[x1,y1]、[x2, y2]……[xn,yn]求cost损失和梯度的均值。实际上我们最主要的目标是找到最接近的w的值,只要多训练几次,对于cost和梯度取不取均值,没有太大区别。所以没有必要把计算时间都浪费在cost和梯度的均值上。所以引入随机梯度。

3.即:第一次用[x1,y1]这组数据计算梯度、更新w;第二次用[x2,y2]这组数据计算梯度、更新w……以此类推,每次随机抽取的用来计算梯度的样本[xn,yn]不是固定的,所以叫做随机梯度下降。


2.pytorch全套代码

import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
# 初始化权重
w = 1.0
# 定义模型
def forward(x):
    return x * w
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2
# 定义梯度计算方法(使用随机梯度下降)
def gradient(xs, ys):
    return 2 * x * (x * w - y)
# 最终绘制图像的x
epoch_list = []
cost_list = []
print ('Predict (before training)', 4 , forward(4))
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        grad = gradient(x, y)
        w = w - 0.01 * grad
        print("\t x=", x, "y=", y, "grade:", grad)
        l = loss(x, y)
    print(' Epoch:', epoch, ' w=', w, ' loss=', l)
    epoch_list.append(epoch)
    cost_list.append(l)
print('Predict (after training)', 4, forward(4))
# 绘图
plt.plot(epoch_list, cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()

3.展示pytorch绘制的图像(epoch-loss)

从图中可以发现,当训练epoch次数增加的时候,损失值会越来越小。

此时打印4 和forward(4),就会得到forward(4)的值接近于8。所以权重w=y/x=2

b0f454fbc374c6b99f8c423112faf830_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L20wXzM4MDY4ODc2,size_16,color_FFFFFF,t_70#pic_center.png

目录
相关文章
|
13天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
156 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
4月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
257 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
4月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
90 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
机器学习/深度学习 算法 安全
从方向导数到梯度:深度学习中的关键数学概念详解
方向导数衡量函数在特定方向上的变化率,其值可通过梯度与方向向量的点积或构造辅助函数求得。梯度则是由偏导数组成的向量,指向函数值增长最快的方向,其模长等于最速上升方向上的方向导数。这两者的关系在多维函数分析中至关重要,广泛应用于优化算法等领域。
140 36
从方向导数到梯度:深度学习中的关键数学概念详解
|
1月前
|
机器学习/深度学习 数据可视化 PyTorch
PyTorch FlexAttention技术实践:基于BlockMask实现因果注意力与变长序列处理
本文介绍了如何使用PyTorch 2.5及以上版本中的FlexAttention和BlockMask功能,实现因果注意力机制与填充输入的处理。通过attention-gym仓库安装相关工具,并详细展示了MultiheadFlexAttention类的实现,包括前向传播函数、因果掩码和填充掩码的生成方法。实验设置部分演示了如何组合这两种掩码并应用于多头注意力模块,最终通过可视化工具验证了实现的正确性。该方法适用于处理变长序列和屏蔽未来信息的任务。
82 17
|
3月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
76 7
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
840 1
深度学习环境搭建笔记(一):detectron2安装过程
|
4月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
614 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
4月前
|
机器学习/深度学习 自然语言处理 并行计算
深度学习笔记(十四):Transormer知识总结
关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。
84 1
|
25天前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
72 22