数据分析案例-往届世界杯数据可视化

简介: 数据分析案例-往届世界杯数据可视化

1.引言

足球是世界上非常受欢迎的运动之一,在全球范围内吸引了众多的参与者。成千上万的职业足球运动员参与到专业的足球比赛中,许多重大的足球赛事(如国际足联世界杯等)受到数以百万计的球迷的关注。可视分析技术能够对分析的流程和结果进行清晰直观的展示,并支持用户对数据进行交互式的探索,被广泛应用到不同领域的数据分析中。


在体育数据可视分析领域中,足球比赛数据的可视分析吸引了众多研究人员的关注。例如,ESPN和WhoScored等足球比赛数据网站大量采用图标和时间轴等可视化元素对比赛过程进行展示,采用柱状图和雷达图等统计图表对球员统计数据进行比较分析。在专业的足球比赛数据分析中,定制的可视分析系统被广泛采用,其可以帮助数据分析师对比赛形势以及比赛中采取的战术进行直观的分析和探索。


足球比赛数据主要包括统计数据、事件数据、轨迹数据等。针对不同的比赛数据类型,相关的可视分析工作可以按照分析任务分为不同的类别。例如针对统计数据,可以分为比赛排名的可视化分析和统计指标的可视化分析等;针对事件数据,可以分为关键事件的可视分析和传球事件的可视分析等;针对轨迹数据,可以分为比赛视频的可视分析、比赛时空轨迹的可视分析、比赛阵形的可视分析等。


2022年卡塔尔世界杯(英语:FIFA World Cup Qatar 2022)是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行、也是第二次在亚洲举行的世界杯足球赛。除此之外,卡塔尔世界杯还是首次在北半球冬季举行、首次由从未进过世界杯决赛圈的国家举办的世界杯足球赛。


2020年7月15日,2022年卡塔尔世界杯赛程公布,全部比赛在卡塔尔境内8座球场举行。2022年6月15日,决赛阶段球队全部确定。 该届赛事揭幕战于11月21日0时(当地时间11月20日19时)进行,由东道主卡塔尔对阵厄瓜多尔;决赛于12月18日23时(当地时间12月18日18时)在卢塞尔体育场进行。


2.项目简介

2.1数据集介绍

数据集来源于天池,世界杯成绩信息表:WorldCupsSummary


包含了所有21届世界杯赛事(1930-2018)的比赛主办国、前四名队伍、总参赛队伍、总进球数、现场观众人数等汇总信息,包括如下字段:


Year: 举办年份

HostCountry: 举办国家

Winner: 冠军队伍

Second: 亚军队伍

Third: 季军队伍

Fourth: 第四名队伍

GoalsScored: 总进球数

QualifiedTeams: 总参赛队伍数

MatchesPlayed: 总比赛场数

Attendance: 现场观众总人数

HostContinent: 举办国所在洲

WinnerContinent: 冠军国家队所在洲

2.2技术工具

Python版本: 3.9


代码编辑器:jupyter notebook


3.数据可视化

首先导入本次项目用到的第三方包并且导入数据集



3.1往届世界杯获奖国家TOP5

这里我们先是分别从原始数据集中提取出获得冠亚季的国家,最后通过merge进行合并可视化



从图中看出,TOP5中的国家有巴西、意大利、德国和法国,可以看出这几个国家在足球方面实力确实很强。


3.2往届世界杯比赛数据情况

这里我们画出世界杯总进球、参赛队伍、比赛场次数的历届数据线图



从结果看出整体趋势都是在上升,中间有几届出现较大的波动。


3.3往届世界杯观众人数情况


从图中看出,现场观众人数跟比赛队伍情况都是一样的有着不断上升趋势,说明世界杯越来越受欢迎。


3.4往届世界杯主办方情况


从图中看出,世界杯的主办方一般都在欧洲和美洲,很少会在亚洲和非洲举办,这可能跟经济实力或者国家足球实力有关吧。


3.5往届世界杯冠军队情况


从图中看出,历届的世界杯冠军队伍都是在欧洲和美洲,说明这两个洲的国家足球实力是真的很强,也难怪举办方也主要是这两个洲,主场光环加成吧。


好了,以上就是本次世界杯往届数据分析可视化,希望对学习可视化的你有所帮助。


目录
相关文章
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
58 1
|
4月前
|
数据采集 存储 数据挖掘
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
本文介绍了一个基于Python的书旗网小说网站数据采集与分析系统,通过自动化爬虫收集小说数据,利用Pandas进行数据处理,并通过Matplotlib和Seaborn等库进行数据可视化,旨在揭示用户喜好和市场趋势,为图书出版行业提供决策支持。
379 6
【优秀python数据分析案例】基于Python书旗网小说网站数据采集与分析的设计与实现
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
51 2
|
3月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
48 4
|
3月前
|
数据可视化 数据挖掘 Python
告别枯燥数字,拥抱视觉盛宴!Python 数据分析中的数据可视化艺术,你 get 了吗?
在数据驱动时代,数据分析至关重要,但单纯依赖数据表格难以揭示其背后的洞见。这时,数据可视化便彰显出其重要性,尤其借助 Python 的强大工具如 Matplotlib、Seaborn 和 Plotly 等,可将数据转化为直观的图形。Matplotlib 提供高度定制的图表,Seaborn 则简化了图表美化过程。通过折线图、散点图、箱线图、小提琴图及热力图等多种图表形式,我们可以更深入地理解数据分布与关系,有效传达信息并支持决策制定。数据可视化不仅是一门技术,更是讲述数据故事的艺术。
75 3
|
4月前
|
数据采集 数据可视化 关系型数据库
【优秀python 数据分析案例】基于python的穷游网酒店数据采集与可视化分析的设计与实现
本文介绍了一个基于Python的穷游网酒店数据采集与可视化分析系统,通过爬虫技术自动抓取酒店信息,并利用数据分析算法和可视化工具,提供了全国主要城市酒店的数量、星级、价格、评分等多维度的深入洞察,旨在为旅行者和酒店经营者提供决策支持。
139 4
【优秀python 数据分析案例】基于python的穷游网酒店数据采集与可视化分析的设计与实现
|
4月前
|
数据可视化 数据挖掘 Python
Python中的数据可视化:探索性数据分析的利器
【8月更文挑战第29天】在数据科学的世界里,数据可视化是理解复杂数据集的关键。本文将引导你通过Python的强大库,如Matplotlib和Seaborn,来揭示数据背后的故事。我们将一起探索如何利用这些工具进行有效的数据可视化,从而促进对数据的深入理解和分析。文章不仅提供代码示例,还将讨论如何选择恰当的图表类型、调整视觉元素以及如何解释图表结果,旨在帮助初学者建立坚实的数据可视化基础。
|
4月前
|
JSON 数据挖掘 API
案例 | 用pdpipe搭建pandas数据分析流水线
案例 | 用pdpipe搭建pandas数据分析流水线
|
4月前
|
数据可视化 数据挖掘 API
Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个综合详细的例子。
|
4月前
|
数据采集 存储 数据可视化
【优秀python数据分析案例】基于python的中国天气网数据采集与可视化分析的设计与实现
本文介绍了一个基于Python的中国天气网数据采集与可视化分析系统,通过requests和BeautifulSoup库实现数据爬取,利用matplotlib、numpy和pandas进行数据可视化,提供了温湿度变化曲线、空气质量图、风向雷达图等分析结果,有效预测和展示了未来天气信息。
1444 3

热门文章

最新文章