python数据分析和可视化【2】鸢尾花数据分析

简介: python数据分析和可视化【2】鸢尾花数据分析

实验要求:

读取iris数据集中鸢尾花的萼片、花瓣长度数据(已保存为csv格式),并对其进行排序、去重,并求出和、累计和、均值、标准差、方差、最小值、最大值。

步骤:

1.导入模块 (格式为import … as …)

2.获取数据:可利用csv模块进行读取,也可用其他方法进行读取

3.数据清理:对读取的数据进行处理(将索引号去掉等等)

4.数据统计

(1)将鸢尾花数据集的花瓣长度进行排序。

(2)查看鸢尾花数据集中有几种花瓣长度。(首先提取所有数据的花瓣长度,然后进行去重)

(3)求数据中花瓣长度的和,均值,方差,最小值及最大值。

通过以上操作,可以发现鸢尾花数据集中哪些信息?

数据集:

代码:

# 步骤1:导入模块
import pandas as pd
import numpy as np
# 步骤2:获取数据
iris_data = pd.read_csv('C:\\Users\86178\Desktop\iris.csv')
# 步骤3:数据清理
petal_length = iris_data['Sepal.Length']    #获取长度列,返回一个series序列
# 步骤4:数据统计
# (1) 将鸢尾花数据集的花瓣长度进行排序
sorted_petal_length = petal_length.sort_values()   #对序列中的值进行排序
# (2) 查看鸢尾花数据集中有几种花瓣长度
unique_petal_length = sorted_petal_length.unique()  #返回序列中所有不重复的元素,返回ndarray数组
# (3) 求数据中花瓣长度的和、均值、方差、最小值及最大值
sum_petal_length = petal_length.sum()
mean_petal_length = petal_length.mean()
var_petal_length = petal_length.var()
std_petal_length = petal_length.std()
min_petal_length = petal_length.min()
max_petal_length = petal_length.max()
# 输出结果
print("排序后的花瓣长度数据:")
print(sorted_petal_length)
print("\\n鸢尾花数据集中有几种花瓣长度:", len(unique_petal_length))
print("\\n花瓣长度的和:", sum_petal_length)
print("花瓣长度的均值:", mean_petal_length)
print("花瓣长度的方差:", var_petal_length)
print("花瓣长度的标准差:", std_petal_length)
print("花瓣长度的最小值:", min_petal_length)
print("花瓣长度的最大值:", max_petal_length)

运行结果:

目录
相关文章
|
1天前
|
存储 数据可视化 算法
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
|
1天前
|
SQL 数据可视化 数据挖掘
2024年8个Python高效数据分析的技巧。,2024年最新Python基础面试题2024
2024年8个Python高效数据分析的技巧。,2024年最新Python基础面试题2024
2024年8个Python高效数据分析的技巧。,2024年最新Python基础面试题2024
|
1天前
|
数据可视化 数据挖掘 Python
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
【5月更文挑战第20天】本文介绍了使用Python的pandas、matplotlib和seaborn库进行数据可视化的步骤,包括创建示例数据集、绘制折线图、柱状图、散点图、热力图、箱线图、小提琴图和饼图。这些图表有助于直观理解数据分布、关系和趋势,适用于数据分析中的探索性研究。
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python数据分析 | 泰坦尼克逻辑回归(下)
Python数据分析 | 泰坦尼克逻辑回归
7 1
|
3天前
|
机器学习/深度学习 数据挖掘 BI
Python数据分析 | 泰坦尼克逻辑回归(上)
Python数据分析 | 泰坦尼克逻辑回归
17 0
|
3天前
|
数据采集 数据挖掘 Python
Python数据分析 | 线性回归
Python数据分析 | 线性回归
14 1
|
3天前
|
机器学习/深度学习 数据采集 自然语言处理
10个 Python 小技巧,覆盖了90%的数据分析需求!_countries_lat_lon
10个 Python 小技巧,覆盖了90%的数据分析需求!_countries_lat_lon
|
4天前
|
数据采集 人工智能 数据挖掘
「一行分析」利用12000条招聘数据分析Python学习方向和就业方向
「一行分析」利用12000条招聘数据分析Python学习方向和就业方向
|
6天前
|
数据采集 数据可视化 数据挖掘
利用Python和Pandas库优化数据分析流程
在当今数据驱动的时代,数据分析已成为企业和个人决策的重要依据。Python作为一种强大且易于上手的编程语言,配合Pandas这一功能丰富的数据处理库,极大地简化了数据分析的流程。本文将探讨如何利用Python和Pandas库进行高效的数据清洗、转换、聚合以及可视化,从而优化数据分析的流程,提高数据分析的效率和准确性。
|
6天前
|
SQL 数据采集 数据挖掘
构建高效的Python数据处理流水线:使用Pandas和NumPy优化数据分析任务
在数据科学和分析领域,Python一直是最受欢迎的编程语言之一。本文将介绍如何通过使用Pandas和NumPy库构建高效的数据处理流水线,从而加速数据分析任务的执行。我们将讨论如何优化数据加载、清洗、转换和分析的过程,以及如何利用这些库中的强大功能来提高代码的性能和可维护性。