常见数据结构-散列表(下)散列表和链表的组合

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 常见数据结构-散列表(下)散列表和链表的组合

一,概述

散列表和链表这两种数据结构经常被放到一起使用。比如 Redis 的有序集合不仅使用了跳表,还用了散列表。再比如 Java 语言中的 LinkedHashMap 容器,也用到了散列表和链表两种数据结构。

二,LRU 缓冲淘汰算法

缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如硬件中的缓存: cpu 缓存,而 cpu 缓存又可以分为一级缓存(L1 Cache),二级缓存(L2 Cache),三级缓存(L3 Cache)。 软件中的缓存: 数据库缓存,数据库本身产品就自带缓存,redis 也可以作为数据库缓存。浏览器缓存,就是我们常说的 Cookie,本质上就是一个文件。

在计算机系统中,CPU 高速缓存(英语:CPU Cache)是用于减少处理器访问内存所需平均时间的部件。在金字塔式存储体系中它位于自顶向下的第二层,仅次于 CPU寄存器。其容量远小于内存,但速度却可以接近处理器的频率。

缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略 FIFOFirst In,First Out)、最少使用策略 LFULeast Frequently Used)、最近最少使用策略 LRULeast Recently Used)。

2.1,基于链表实现 LRU 缓存淘汰算法

算法思路:

首先维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。

1,如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。

2,如果此数据没有在缓存链表中,又可以分为两种情况:

  • 如果此时缓存未满,则将此结点直接插入到链表的头部;
  • 如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。

到此为止,我们就用链表实现了一个 LRU 缓存。

2.2,基于链表和散列表的组合实现 LRU

假设我们需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,我们就直接将链表头部的结点删除。

当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的 LRU 缓存淘汰算法的时间复杂很高,是 O(n)。

一个缓存(cache)系统主要包含下面这几个操作:

  • 往缓存中添加一个数据;
  • 从缓存中删除一个数据;
  • 在缓存中查找一个数据。

这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是 O(n)O(n)O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到 O(1)O(1)O(1)。具体的结构如下图:

网络异常,图片无法展示
|

这里使用双向链表存储数据,与之前的双向链表不同,链表中的每个结点除了存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext

这里的散列表是通过链表法解决散列冲突的,所以从逻辑上讲每个结点会在两条链中(但实际物理上还是只有一个双向链表)。一个链是双向链表,另一个链是散列表中的拉链,拉链就是指散列表 hash 冲突所维护的那个单链表。

这里双向链表的 prevnext 指针是纵向指针,hnext 是横向指针,hnexh 指针维护的是散列表解决冲突的单链表,prevnext 指针的双链表维护的是数据缓存的时间线,决策对节点的淘汰和增加。

举例分析:第一个槽位(slot)的最后一个节点应该是在添加时发现有散列冲突,且属于第一个槽位,所以用 hnext 指针和第一个槽位的第一个节点相连,然后又因为时间上是最后一个插入的节点,所以和第五个槽位的最后一个节点通过 prenext 相连在一起。综上,通过图中的 prenext 指针连接顺序(浅色线),我们可以明显得出节点的时间顺序,通过 hnext 指针(黑色线)可以知道节点在哪个槽中。

在散列表和链表组合的存储结构中实现 LRU,查找和删除一个数据的时间复杂度都是 O(1)O(1)O(1)

在散列表中查找一个元素时,这个元素就是散列表定义中的 key,通过散列函数 hash(key) 得到散列值,从而找到对应数组下标,即找到对应的槽位(slot),最后遍历槽位对应的链表。

添加数据到缓存的操作会稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。

这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,都可以在 O(1)O(1)O(1) 的时间复杂度内完成。所以,这三个操作的时间复杂度都是 O(1)O(1)O(1)。至此,我们就通过散列表和双向链表的组合使用,实现了一个高效的、支持 LRU 缓存淘汰算法的缓存系统原型。

三,Redis 有序集合

在有序集合中,每个成员对象有两个重要的属性,key(键值)和 score(分值)。我们不仅会通过 score 来查找数据,还会通过 key 来查找数据。

细化一下 Redis 有序集合的操作,如下:

  • 添加一个成员对象;
  • 按照键值来删除一个成员对象;
  • 按照键值来查找一个成员对象;
  • 按照分值区间查找数据,比如查找积分在[100, 356]之间的成员对象;
  • 按照分值从小到大排序成员变量;

如果我们仅仅按照分值将成员对象组织成跳表的结构,那按照键值来删除、查询成员对象就会很慢,解决方法与 LRU 缓存淘汰算法的解决方法类似。我们可以再按照键值构建一个散列表,这样按照 key 来删除、查找一个成员对象的时间复杂度就变成了 O(1)O(1)O(1)。同时,借助跳表结构,其他操作也非常高效。

四,Java LinkedHashMap

LinkedHashMap 使用三列表和链表组合实现,可以按照插入顺序遍历数据、支持按照访问顺序来遍历数据。

实际上,LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的 “Linked” 实际上是指的是双向链表,并非指用链表法解决散列冲突。

Python 中的 OrderedDict 也有这个特性,Key 会按照插入的顺序排列,不是 Key 本身排序。注意,使用 dict 时,Key 是无序的。

五,为什么散列表经常和链表结构一起使用

散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那我们需要将散列表中的数据拷贝到数组中,然后排序,再遍历。

但是散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那这样效率势必会很低。为了解决这个问题,所以我们将散列表和链表(或者跳表)结合在一起使用,提高顺序遍历散列表中数据的效率

参考资料


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
存储 算法 Java
散列表的数据结构以及对象在JVM堆中的存储过程
本文介绍了散列表的基本概念及其在JVM中的应用,详细讲解了散列表的结构、对象存储过程、Hashtable的扩容机制及与HashMap的区别。通过实例和图解,帮助读者理解散列表的工作原理和优化策略。
39 1
散列表的数据结构以及对象在JVM堆中的存储过程
|
1月前
|
存储 算法 Perl
数据结构实验之链表
本实验旨在掌握线性表中元素的前驱、后续概念及链表的建立、插入、删除等算法,并分析时间复杂度,理解链表特点。实验内容包括循环链表应用(约瑟夫回环问题)、删除单链表中重复节点及双向循环链表的设计与实现。通过编程实践,加深对链表数据结构的理解和应用能力。
54 4
|
23天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
44 5
|
1月前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
85 4
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
1月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
48 0
|
2月前
|
存储 Java
数据结构第三篇【链表的相关知识点一及在线OJ习题】
数据结构第三篇【链表的相关知识点一及在线OJ习题】
29 7
|
2月前
|
存储 安全 Java
【用Java学习数据结构系列】探索顺序表和链表的无尽秘密(附带练习唔)pro
【用Java学习数据结构系列】探索顺序表和链表的无尽秘密(附带练习唔)pro
27 3
|
2月前
|
算法 Java
数据结构与算法学习五:双链表的增、删、改、查
双链表的增、删、改、查操作及其Java实现,并通过实例演示了双向链表的优势和应用。
21 0
数据结构与算法学习五:双链表的增、删、改、查