轻量级网络论文-CSPNet 详解

简介: 轻量级网络论文-CSPNet 详解

摘要

CSPNet 是作者 Chien-Yao Wang2019 发表的论文 CSPNET: A NEW BACKBONE THAT CAN ENHANCE LEARNING CAPABILITY OF CNN。也是对 DenseNet 网络推理效率低的改进版本。

作者认为网络推理成本过高的问题是由于网络优化中的梯度信息重复导致的CSPNet 通过将梯度的变化从头到尾地集成到特征图中,在减少了计算量的同时可以保证准确率。CSPCross Stage Partial Network,简称 CSPNet) 方法可以减少模型计算量和提高运行速度的同时,还不降低模型的精度,是一种更高效的网络设计方法,同时还能和ResnetDensenetDarknetbackbone 结合在一起。

1,介绍

虽然已经出现了 MobileNetv1/v2/v3ShuffleNetv1/v2 这种为移动端(CPU)设计的轻量级网络,但是它们所采用的基础技术-深度可分离卷积技术并不适用于 NPU 芯片(基于专用集成电路 (ASIC) 的边缘计算系统)。

CSPNet 和不同 backbone 结合后的效果如下图所示。

网络异常,图片无法展示
|


和目标检测网络结合后的效果如下图所示。

网络异常,图片无法展示
|


CSPNet 提出主要是为了解决三个问题:

  1. 增强 CNN 的学习能力,能够在轻量化的同时保持准确性。
  2. 降低计算瓶颈和 DenseNet 的梯度信息重复。
  3. 降低内存成本。

2,相关工作

CNN 架构的设计

实时目标检测器

3,改进方法

原论文命名为 Method,但我觉得叫改进方法更能体现章节内容。

3.1,Cross Stage Partial Network

1,DenseNet

网络异常,图片无法展示
|


其中 fff 为权值更新函数,gig_igi 为传播到第 iii 个密集层的梯度。从公式 (2) 可以发现,大量的度信息被重用来更新不同密集层的权值,这将导致无差异的密集层反复学习复制的梯度信息。

2,Cross Stage Partial DenseNet.

作者提出的 CSPDenseNet 的单阶段的架构如图 2(b) 所示。CSPDenseNet 的一个阶段是由局部密集块和局部过渡层组成(a partial dense block and a partial transition layer)。

网络异常,图片无法展示
|


总的来说,作者提出的 CSPDenseNet 保留了 DenseNet 重用特征特性的优点,但同时通过截断梯度流防止了过多的重复梯度信息。该思想通过设计一种分层的特征融合策略来实现,并应用于局部过渡层(partial transition layer)。

3,Partial Dense Block.

设计局部密集块(partial dense block)的目的是为了

  1. 增加梯度路径:通过分块归并策略,可以使梯度路径的数量增加一倍。由于采用了跨阶段策略,可以减轻使用显式特征图 copy 进行拼接所带来的弊端;
  2. 每一层的平衡计算:通常,DenseNet 基层的通道数远大于生长速率。由于在局部稠密块中,参与密集层操作的基础层通道仅占原始数据的一半,可以有效解决近一半的计算瓶颈;
  3. 减少内存流量: 假设 DenseNet 中一个密集块的基本特征图大小为 w×h×cw\times h\times cw×h×c,增长率为 ddd,共有 mmm 个密集块。则该密集块的 CIO为 (c×m)+((m2+m)×d)/2(c\times m) + ((m^2+m)\times d)/2(c×m)+((m2+m)×d)/2,而局部密集块(partial dense block)的 CIO((c×m)+(m2+m)×d)/2((c\times m) + (m^2+m)\times d)/2((c×m)+(m2+m)×d)/2。虽然 mmmddd 通常比 ccc 小得多,但是一个局部密集的块最多可以节省网络一半的内存流量。

4,Partial Transition Layer.

设计局部过渡层的目的是使梯度组合的差异最大。局部过渡层是一种层次化的特征融合机制,它利用梯度流的聚合策略来防止不同的层学习重复的梯度信息。在这里,我们设计了两个 CSPDenseNet 变体来展示这种梯度流截断是如何影响网络的学习能力的。

网络异常,图片无法展示
|


Transition layer 的含义和 DenseNet 类似,是一个 1x1 的卷积层(没有再使用 average pool)。上图中 transition layer 的位置决定了梯度的结构方式,并且各有优势:

  • (c) 图 Fusion First 方式,先将两个部分进行 concatenate,然后再进行输入到Transion layer 中,采用这种做法会是的大量特梯度信息被重用,有利于网络学习;
  • (d) 图 Fusion Last 的方式,先将部分特征输入 Transition layer,然后再进行concatenate,这样梯度信息将被截断,损失了部分的梯度重用,但是由于 Transition 的输入维度比(c)图少,大大减少了计算复杂度。
  • (b) 图中的结构是论文 CSPNet 所采用的,其结合了 (c)、(d) 的特点,提升了学习能力的同时也提高了一些计算复杂度。 作者在论文中给出其使用不同 Partial Transition Layer 的实验结果,如下图所示。具体使用哪种结构,我们可以根据条件和使用场景进行调整。

网络异常,图片无法展示
|


5,Apply CSPNet to Other Architectures.

CSP 应用到 ResNeXt 或者 ResNet 的残差单元后的结构图如下所示:

网络异常,图片无法展示
|


3.2,Exact Fusion Model

Aggregate Feature Pyramid.

提出了 EFM 结构能够更好地聚集初始特征金字塔。

网络异常,图片无法展示
|


4,实验

4.1,实验细节

4.2,消融实验

EFM 在 COCO 数据集上的消融实验结果。

网络异常,图片无法展示
|


4.3,实验总结

从实验结果来看,分类问题中,使用 CSPNet 可以降低计算量,但是准确率提升很小;在目标检测问题中,使用 CSPNet 作为Backbone 带来的精度提升比较大,可以有效增强 CNN 的学习能力,同时也降低了计算量。

5,结论

CSPNet 是能够用于移动 gpucpu 的轻量级网络架构。

作者认为论文最主要的贡献是认识到冗余梯度信息问题,及其导致的低效优化和昂贵的推理计算。同时也提出了利用跨阶段特征融合策略和截断梯度流来增强不同层间学习特征的可变性。

此外,还提出了一种 EFM 结构,它结合了 Maxout 操作来压缩从特征金字塔生成的特征映射,这大大降低了所需的内存带宽,因此推理的效率足以与边缘计算设备兼容。

实验结果表明,本文提出的基于 EFMCSPNet 在移动GPUCPU 的实时目标检测任务的准确性和推理率方面明显优于竞争对手。

6,代码解读

1,Partial Dense Block 的实现,代码可以直接在 Dense Block 代码的基础上稍加修改即可,代码参考 这里。简单的 Dense Block 代码如下:

class conv2d_bn_relu(nn.Module):
    """
    BN_RELU_CONV, 
    """
    def __init__(self, in_channels: object, out_channels: object, kernel_size: object, stride: object, padding: object,
                 dilation=1, groups=1, bias=False) -> object:
        super(BN_Conv2d, self).__init__()
        layers = [nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, 
    padding=padding, dilation=dilation, groups=groups, bias=bias),
        nn.BatchNorm2d(in_channels),
        nn.ReLU(inplace=False)]
        self.seq = nn.Sequential(*layers)
    def forward(self, x):
        return self.seq(x)
class bn_relu_conv2d(nn.Module):
    """
    BN_RELU_CONV, 
    """
    def __init__(self, in_channels: object, out_channels: object, kernel_size: object, stride: object, padding: object,
                 dilation=1, groups=1, bias=False) -> object:
        super(BN_Conv2d, self).__init__()
        layers = [nn.BatchNorm2d(in_channels),
          nn.ReLU(inplace=False),
          nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
                            padding=padding, dilation=dilation, groups=groups, bias=bias)]
        self.seq = nn.Sequential(*layers)
    def forward(self, x):
        return self.seq(x)
class DenseBlock(nn.Module):
    def __init__(self, input_channels, num_layers, growth_rate):
        super(DenseBlock, self).__init__()
        self.num_layers = num_layers
        self.k0 = input_channels
        self.k = growth_rate
        self.layers = self.__make_layers()
    def __make_layers(self):
        layer_list = []
        for i in range(self.num_layers):
            layer_list.append(nn.Sequential(
                bn_relu_conv2d(self.k0 + i * self.k, 4 * self.k, 1, 1, 0),
                bn_relu_conv2d(4 * self.k, self.k, 3, 1, 1)
            ))
        return layer_list
    def forward(self, x):
        feature = self.layers[0](x "0")
        out = torch.cat((x, feature), 1)
        for i in range(1, len(self.layers)):
            feature = self.layers[i](out "i")
            out = torch.cat((feature, out), 1)
        return out
# Partial Dense Block 的实现:
class CSP_DenseBlock(nn.Module):
    def __init__(self, in_channels, num_layers, k, part_ratio=0.5):
        super(CSP_DenseBlock, self).__init__()
        self.part1_chnls = int(in_channels * part_ratio)
        self.part2_chnls = in_channels - self.part1_chnls
        self.dense = DenseBlock(self.part2_chnls, num_layers, k)
        trans_chnls = self.part2_chnls + k * num_layers
        self.transtion = conv2d_bn_relu(trans_chnls, trans_chnls, 1, 1, 0)
    def forward(self, x):
        part1 = x[:, :self.part1_chnls, :, :]
        part2 = x[:, self.part1_chnls:, :, :]
        part2 = self.dense(part2)  # 也可以是残差块单元
        part2 = self.transtion(part2)  # Fusion lirst
        out = torch.cat((part1, part2), 1)
        return out
复制代码


参考资料


相关文章
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
68 3
|
1月前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
2月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
41 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
2月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
72 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
2月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
54 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
4月前
|
数据采集 资源调度 JavaScript
Node.js 适合做高并发、I/O密集型项目、轻量级实时应用、前端构建工具、命令行工具以及网络爬虫和数据处理等项目
【8月更文挑战第4天】Node.js 适合做高并发、I/O密集型项目、轻量级实时应用、前端构建工具、命令行工具以及网络爬虫和数据处理等项目
63 5
|
4月前
|
人工智能 算法 安全
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码
本文总结了2023年第十三届MathorCup高校数学建模挑战赛C题的解题过程,详细阐述了电商物流网络在面临突发事件时的包裹应急调运与结构优化问题,提出了基于时间序列预测、多目标优化、遗传算法和重要性评价模型的综合解决方案,并提供了相应的31页论文和代码实现。
85 0
|
1天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
34 17
|
12天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
13天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
36 10