【算法基础】归并排序解析

简介: 归并排序是建立在归并操作上的一种有效,稳定的排序算法,它是采用分治法的一个非常典型的应用。将待排序数组分为两条线逐级拆分,将子序列进行排序,然后沿两条线逐级合并,得到完全有序序列。这种通过递归,层层合并的方法,称为归并。
​作者:[柒号华仔]

个人信条:星光不问赶路人,岁月不负有心人。

个人方向:专注于5G领域,同时兼顾其他网络协议,编解码协议,C/C++,linux等,感兴趣的小伙伴可以关注我,一起交流。


1. 归并排序介绍

1.1 定义

谈到归并我们需要先认识“分治”,顾名思义,分治即分而治之,一个问题很复杂,那么我们把问题拆分为简单点的小问题,将小问题继续拆分,最后所需面对的都是最小问题。将这些最小问题解决掉,一步步合并为大问题,最后实现整个问题的解决。

归并排序是建立在归并操作上的一种有效,稳定的排序算法,它是采用分治法的一个非常典型的应用。将待排序数组分为两条线逐级拆分,将子序列进行排序,然后沿两条线逐级合并,得到完全有序序列。这种通过递归,层层合并的方法,称为归并。

1.2 基本原理

归并操作的工作原理如下:

  1. 将数组拆分两个等分数组,然后逐级往下进行等分拆分,直至成为长度为1的最小元素;
  2. 数组元素两两进行排序,这些两两排序的元素归并为新的子数组;这里两个归并起点有两个点,一个是初始数组首元素,一个是等分初始数组中间元素。
  3. 前后两个子数组进行排序合并,形成更大的子数组;
  4. 依次向上排序和合并,直至两条线均合并为一个有序数组;
  5. 将两个支线数组进行合并,得到最终的有序数组。

1.3 时间复杂度

假设数组元素个数为n,时间复杂度为T(n),
将 n 个数的序列,分为两个 n/2 的序列,则:T(n) = 2T(n/2) + n
将 n/2 个数的序列,分为四个 n/4 的序列,则:T(n) = 4T(n/4) + 2n
将 n/4 个数的序列,分为八个 n/8 的序列,则:T(n) = 8T(n/8) + 3n

将 n/2k 个数的序列,分为2k个 n/2k 的序列,则:T(n) = 2kT(n/2k) + kn

当 T(n/2k) = T(1)时, 即n/2k = 1,转换为以2为底n的对数:k = log2n,把k带入到T(n)中,得:T(n) = n + nlog2n。

因此归并排序的时间复杂度就是O(nlogn)。

2. 代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void Merge(int* arr, int left, int right, int mid)
{
    int *p = (int*)malloc((right - left + 1) * sizeof(int));
    int *temp = p;
    int L = left;
    int R = mid + 1;
        memset(p, 0, (right - left + 1) * sizeof(int));
        
    while((L <= mid)&&(R <= right))
    {
        *p++ = arr[L] < arr[R]?arr[L++] : arr[R++];
    }
    while (L <= mid)
    {
        *p++ = arr[L++];
    }
    while (R <= right)
    {
        *p++ = arr[R++];
    }
 
    memcpy(arr + left, temp, (right - left + 1) * sizeof(int));
 
    free(temp);
}
 
void MergeSort(int* arr, int left, int right)
{
    if (left >= right)
        return;
    int mid = (left + right)/2;
 
    MergeSort(arr, left, mid);            
    MergeSort(arr, mid + 1, right);        
    Merge(arr, left, right, mid);    
}
 
int main()
{
    int arr[10] = { 3,6,9,2,1,4,8,7,5,10};
    MergeSort(arr, 0, 9);
 
    for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
    {
        printf("%d ", arr[i]);
    }
 
    return 0;
}

运行结果:

image.png

相关文章
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
141 6
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
18天前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
231 1
|
18天前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
145 1
贪心算法:部分背包问题深度解析
|
18天前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
18天前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
机器学习/深度学习 算法 自动驾驶
139 0
|
24天前
|
机器学习/深度学习 人工智能 资源调度
大语言模型的核心算法——简要解析
大语言模型的核心算法基于Transformer架构,以自注意力机制为核心,通过Q、K、V矩阵动态捕捉序列内部关系。多头注意力增强模型表达能力,位置编码(如RoPE)解决顺序信息问题。Flash Attention优化计算效率,GQA平衡性能与资源消耗。训练上,DPO替代RLHF提升效率,MoE架构实现参数扩展,Constitutional AI实现自监督对齐。整体技术推动模型在长序列、低资源下的性能突破。
197 8
|
26天前
|
算法 API 数据安全/隐私保护
深度解析京东图片搜索API:从图像识别到商品匹配的算法实践
京东图片搜索API基于图像识别技术,支持通过上传图片或图片URL搜索相似商品,提供智能匹配、结果筛选、分页查询等功能。适用于比价、竞品分析、推荐系统等场景。支持Python等开发语言,提供详细请求示例与文档。
|
3月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
197 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
481 3

热门文章

最新文章

推荐镜像

更多
  • DNS