dataworks同步maxcompute数据到ES,geo_point 类型写入测试

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
大数据开发治理平台DataWorks,Serverless资源组抵扣包300CU*H
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: dataworks同步maxcompute数据到ES,geo_point 类型写入测试

一、问题背景


使用 dataworks同步maxcompute数据到ES的时候,目标端用到geo_point类型字段是报错:

"error":{"type":"mapper_parsing_exception","reason":"failed to parse field [location] of type [geo_point]","caused_by":{"type":"parse_exception","reason":"latitude must be a number"


本文通过测试详细描述,同步该类型字段,源端和目标端应该怎么配置


二  、测试步骤


(一)环境准备


1 源端,使用默认的odps数据源


2 目标端,使用6.7.0版本的es实例


数据源连通性已经确认连通


(二)数据准备

1、在mc侧创建源表

create table toes(idd int ,location1 STRING  );


2、在es侧创建目标索引

PUT /product_info
{
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 1
  },
  "mappings": {
    "mytype": {
      "properties": {
        "location": {
          "type": "geo_point"        }
      }
    }}
}


3、同步数据配置

{
    "type": "job",
    "version": "2.0",
    "steps": [
        {
            "stepType": "odps",
            "parameter": {
                "partition": [],
                "datasource": "odps_first",
                "envType": 0,
                "isSupportThreeModel": false,
                "column": [
                    "location1"
                ],
                "tableComment": "",
                "table": "toes"
            },
            "name": "Reader",
            "category": "reader"
        },
        {
            "stepType": "elasticsearch",
            "parameter": {
                "actionType": "index",
                "indexType": "mytype",
                "cleanup": false,
                "datasource": "elastic_test",
                "envType": 0,
                "discovery": false,
                "column": [
                    {
                        "name": "location",
                        "type": "geo_point"
                    }
                ],
                "index": "product_info",
                "primaryKeyInfo": {
                    "type": "nopk",
                    "fieldDelimiter": ","
                },
                "dynamic": false,
                "batchSize": 1024,
                "splitter": ","
            },
            "name": "Writer",
            "category": "writer"
        },
        {
            "copies": 1,
            "parameter": {
                "nodes": [],
                "edges": [],
                "groups": [],
                "version": "2.0"
            },
            "name": "Processor",
            "category": "processor"
        }
    ],
    "setting": {
        "errorLimit": {
            "record": ""
        },
        "locale": "zh",
        "speed": {
            "throttle": false,
            "concurrent": 1
        }
    },
    "order": {
        "hops": [
            {
                "from": "Reader",
                "to": "Writer"
            }
        ]
    }
}


三、测试结果


1、在源端插入测试数据

insert into  toes values(1,"11.55555,11.11111"),(2,"[22.55555,22.11111]");
select * from toes;


2、在目标端查询数据

GET /product_info/_search


四、问题总结


1  如上测试总结,在源端的数据源类型为string类型,并且数据写入时是正常的两个数字,既可被识别到。


如下的数据,如在源端加了 []  "" 等符号,都会被识别失败。


2  elasticsearch writer参考:https://help.aliyun.com/document_detail/137770.html

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
一站式大数据开发治理平台DataWorks初级课程
DataWorks 从 2009 年开始,十ー年里一直支持阿里巴巴集团内部数据中台的建设,2019 年双 11 稳定支撑每日千万级的任务调度。每天阿里巴巴内部有数万名数据和算法工程师正在使用DataWorks,承了阿里巴巴 99%的据业务构建。本课程主要介绍了阿里巴巴大数据技术发展历程与 DataWorks 几大模块的基本能力。 课程目标  通过讲师的详细讲解与实际演示,学员可以一边学习一边进行实际操作,可以深入了解DataWorks各大模块的使用方式和具体功能,让学员对DataWorks数据集成、开发、分析、运维、安全、治理等方面有深刻的了解,加深对阿里云大数据产品体系的理解与认识。 适合人群  企业数据仓库开发人员  大数据平台开发人员  数据分析师  大数据运维人员  对于大数据平台、数据中台产品感兴趣的开发者
相关文章
|
3月前
|
DataWorks Kubernetes 大数据
飞天大数据平台产品问题之DataWorks提供的商业化服务如何解决
飞天大数据平台产品问题之DataWorks提供的商业化服务如何解决
|
3月前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之ODPS数据怎么Merge到MySQL数据库
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
3月前
|
分布式计算 DataWorks 数据管理
DataWorks操作报错合集之写入ODPS目的表时遇到脏数据报错,该怎么解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
3月前
|
分布式计算 DataWorks NoSQL
DataWorks操作报错合集之遇到报错:failed: ODPS-0130071:[1,36] Semantic analysis exception,该怎么解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
132 0
|
3月前
|
SQL 分布式计算 DataWorks
DataWorks操作报错合集之如何解决datax同步任务时报错ODPS-0410042:Invalid signature value
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
3月前
|
分布式计算 DataWorks 关系型数据库
DataWorks操作报错合集之新建MAXComputer数据源时,如何解决报错ODPS-0420095: Access Denied
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
3月前
|
SQL 分布式计算 运维
DataWorks产品使用合集之如何恢复odps误删的分区
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
6天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
34 3
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
57 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
237 7
Jmeter实现WebSocket协议的接口测试方法

热门文章

最新文章