转载《Data Lake Analytics: 使用DataWorks来调度任务》

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
对象存储 OSS,20GB 3个月
简介: DataWorks作为阿里云上广受欢迎的大数据开发调度服务,最近加入了对于Data Lake Analytics的支持,意味着所有Data Lake Analytics的客户可以获得任务开发、任务依赖关系管理、任务调度、任务运维等等全方位强大的能力,今天就给大家介绍一下如何使用DataWorks来调度DLA的脚本任务。

image

DataWorks作为阿里云上广受欢迎的大数据开发调度服务,最近加入了对于Data Lake Analytics的支持,意味着所有Data Lake Analytics的客户可以获得任务开发、任务依赖关系管理、任务调度、任务运维等等全方位强大的能力,今天就给大家介绍一下如何使用DataWorks来调度DLA的脚本任务。

开通DLA

在开始之前我们要有一个 DLA 的账号,目前 DLA 的新用户都有50T的免费流量,可以放心试用。开通DLA成功后,你会获得一个用户名和密码, 然后在控制台登录就可以使用。
image
或者如果你是极客,更偏爱命令行,你也可以使用普通的 MySQL 客户端就可以连接 DLA 了:

mysql -hservice.cn-region.datalakeanalytics.aliyuncs.com 
      -P10000 
      -u<your-user-name> 
      -p<your-password>

在这篇文章里面,我会使用 MySQL 命令行给大家演示 DLA 的功能。

申请试用 DataWorks + DLA

开通DLA服务之后,您还需要开通DataWorks的服务,目前DataWorks还在公测阶段,放心使用。

然后您可以在您对应的DLA服务群里面找我们任何一位同学开通一下DLA + DataWorks的试用资格(目前这个功能还处于邀请试用的阶段,没有完全放开)。

如果目前还没有专门DLA服务群的客户,可以通过工单联系我们。

DLA数据、库、表准备

为了演示如何在DataWorks上调度DLA的任务,我们后面会用到一些测试数据,这里我们用著名的TPCH的测试数据集, 数据保存在OSS上面。

image

通过MySQL命令行我们创建对应的库、表:

CREATE SCHEMA dataworks_demo with DBPROPERTIES(
  CATALOG = 'oss',
  LOCATION = 'oss://test-bucket/datasets/'  
);

use dataworks_demo;
CREATE EXTERNAL TABLE IF NOT EXISTS orders (
    O_ORDERKEY INT, 
    O_CUSTKEY INT, 
    O_ORDERSTATUS STRING, 
    O_TOTALPRICE DOUBLE, 
    O_ORDERDATE DATE, 
    O_ORDERPRIORITY STRING, 
    O_CLERK STRING, 
    O_SHIPPRIORITY INT, 
    O_COMMENT STRING
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS TEXTFILE 
LOCATION 'oss://test-bucket/datasets/tpch/1x/text_string/orders_text/';

-- 结果表 finished_orders
CREATE EXTERNAL TABLE IF NOT EXISTS finished_orders (
    O_ORDERKEY INT,  
    O_TOTALPRICE DOUBLE
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS TEXTFILE 
LOCATION 'oss://test-bucket/datasets/dataworks_demo/finished_orders/';

-- 结果表 high_value_finished_orders
CREATE EXTERNAL TABLE IF NOT EXISTS high_value_finished_orders (
    O_ORDERKEY INT, 
    O_TOTALPRICE DOUBLE
) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' 
STORED AS TEXTFILE 
LOCATION 'oss://test-bucket/datasets/dataworks_demo/high_value_finished_orders/';

任务调度其中一个重要的功能是任务之间的依赖,为了演示这个功能,我们这里会在DataWorks里面创建两个DLA任务, 我们的表、任务之间的关系如下图:

image

  • 任务一: 我们从orders表清洗出已经完成的订单: o_orderstatus = 'F' , 并写入 finished_orders
  • 任务二: 再从 finished_orders 表里面找出总价大于10000的订单: o_totalprice > 10000, 并写入 high_value_finished_orders 表。

关于如何使用DLA分析OSS数据更详细的信息可以参考: Data Lake Analytics + OSS数据文件格式处理大全: https://yq.aliyun.com/articles/623246 使用Data Lake Analytics + OSS分析CSV格式的TPC-H数据集: https://yq.aliyun.com/articles/623282

在 DataWorks 上创建 DLA 任务

在开通了 DataWorks + DLA 的功能后,我们可以在DataWorks的数据开发IDE里面创建DLA的任务了,如下图:

image

我们把第一个任务命名为: finished_orders , 点击确定会进入一个SQL编辑的页面,要写DLA SQL一定要告诉DataWorks我们写的SQL运行在哪个DLA的服务上,这个在DataWorks里面被包装成了"数据源"的概念:

DataWorks的规范是任务的名称跟任务的输出表的名称保持一致。

image

刚进来的时候没有数据源,点击新建数据源:

image

填写必要的信息点击确定完成。

image

DataWorks为了安全的考虑,对可以连接的服务进行了安全控制,因此我们需要把我们要连的DLA的地址+端口加到白名单里面去,这个配置是在DataWorks工作空间的配置里面:

image

具体配置如下(需要换成你实际的IP+端口):

image

这里需要注意一下,工作空间配置只有工作空间管理员才有权限。

做了这么多之后,我们终于可以在编辑页面看到DLA的数据源了,下面我们在 finished_orders 的任务里面填入如下SQL, 并点击执行:

use dataworks_demo;
insert into finished_orders
select O_ORDERKEY, O_TOTALPRICE
from orders 
where O_ORDERSTATUS = 'F';

如下图:
image

重复上述步骤,我们创建第二个任务: high_value_finished_orders:

use dataworks_demo;
insert into high_value_finished_orders
select * from finished_orders
where O_TOTALPRICE > 10000;

配置任务依赖

单个任务单次运行没什么太大意思,任务调度的核心在于多个任务按照指定的依赖关系在指定的时间进行运行,下面我们让: task_finished_orders 在每天半夜2点开始运行:
image

high_value_finished_orders finished_orders 成功运行之后再运行:

image

任务发布

任务配置好之后,就可以进行任务的发布、运维了。任务要发布首先必须提交:
image

提交之后,我们在任务发布界面的待发布列表可以看到所有待发布的任务:

image

选择我们刚刚提交的两个任务,我们就可以发布了:
image

在发布列表页面可以查看我们刚刚的发布是否成功:
image

发布成功之后,我们就可以进入任务运维页面查看我们的任务,进行各种运维操作了。

image

总结

在这篇文章里面,我带大家一起体验了一下如何用 DataWorks 来开发、调度DLA的任务,有了这个能力之后大家可以更方便地进行每天任务的开发、运维了。

本文转自:https://yq.aliyun.com/articles/690917

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
一站式大数据开发治理平台DataWorks初级课程
DataWorks 从 2009 年开始,十ー年里一直支持阿里巴巴集团内部数据中台的建设,2019 年双 11 稳定支撑每日千万级的任务调度。每天阿里巴巴内部有数万名数据和算法工程师正在使用DataWorks,承了阿里巴巴 99%的据业务构建。本课程主要介绍了阿里巴巴大数据技术发展历程与 DataWorks 几大模块的基本能力。 课程目标 &nbsp;通过讲师的详细讲解与实际演示,学员可以一边学习一边进行实际操作,可以深入了解DataWorks各大模块的使用方式和具体功能,让学员对DataWorks数据集成、开发、分析、运维、安全、治理等方面有深刻的了解,加深对阿里云大数据产品体系的理解与认识。 适合人群 &nbsp;企业数据仓库开发人员 &nbsp;大数据平台开发人员 &nbsp;数据分析师 &nbsp;大数据运维人员 &nbsp;对于大数据平台、数据中台产品感兴趣的开发者
目录
相关文章
|
1月前
|
SQL 人工智能 DataWorks
DataWorks:新一代 Data+AI 数据开发与数据治理平台演进
本文介绍了阿里云 DataWorks 在 DA 数智大会 2024 上的最新进展,包括新一代智能数据开发平台 DataWorks Data Studio、全新升级的 DataWorks Copilot 智能助手、数据资产治理、全面云原生转型以及更开放的开发者体验。这些更新旨在提升数据开发和治理的效率,助力企业实现数据价值最大化和智能化转型。
247 5
|
3月前
|
SQL 机器学习/深度学习 分布式计算
dataworks节点任务
在DataWorks中,你可以通过拖拽节点以及连线来构建复杂的工作流,这样可以方便地管理多个任务之间的依赖关系。此外,DataWorks还提供了调度功能,使得这些任务可以在设定的时间自动执行。这对于构建自动化、定时的数据处理管道非常有用。
64 5
|
4月前
|
SQL DataWorks 安全
DataWorks产品使用合集之如何实现分钟级调度
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
DataWorks 监控 安全
DataWorks产品使用合集之怎么设置实时同步任务的速率和并发
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
DataWorks 安全 定位技术
DataWorks产品使用合集之怎么指定任务的执行时间
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
分布式计算 DataWorks 监控
DataWorks产品使用合集之设置任务监控的步骤是什么
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
分布式计算 运维 DataWorks
DataWorks产品使用合集之如何实现任务的批量导入和导出
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
SQL DataWorks 安全
DataWorks产品使用合集之怎么跨项目移动sql任务
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
DataWorks Kubernetes 大数据
飞天大数据平台产品问题之DataWorks提供的商业化服务如何解决
飞天大数据平台产品问题之DataWorks提供的商业化服务如何解决
|
4月前
|
运维 DataWorks 监控
DataWorks产品使用合集之如何自定义UDTF
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。

热门文章

最新文章

  • 1
    DataWorks操作报错合集之DataWorks任务异常 报错: GET_GROUP_SLOT_EXCEPTION 该怎么处理
    111
  • 2
    DataWorks操作报错合集之DataWorksUDF 报错:evaluate for user defined function xxx cannot be loaded from any resources,该怎么处理
    108
  • 3
    DataWorks操作报错合集之在DataWorks中,任务流在调度时间到达时停止运行,是什么原因导致的
    106
  • 4
    DataWorks操作报错合集之DataWorks ODPS数据同步后,timesramp遇到时区问题,解决方法是什么
    92
  • 5
    DataWorks操作报错合集之DataWorks配置参数在开发环境进行调度,参数解析不出来,收到了 "Table does not exist" 的错误,该怎么处理
    94
  • 6
    DataWorks操作报错合集之DataWorks中udf开发完后,本地和在MaxCompute的工作区可以执行函数查询,但是在datawork里报错FAILED: ODPS-0130071:[2,5],是什么原因
    103
  • 7
    DataWorks操作报错合集之DataWorks提交失败: 提交节点的源码内容到TSP(代码库)失败:"skynet_packageid is null,该怎么解决
    118
  • 8
    DataWorks操作报错合集之DataWorks在同步mysql时报错Code:[Framework-02],mysql里面有个json类型字段,是什么原因导致的
    151
  • 9
    DataWorks操作报错合集之DataWorks集成实例绑定到同一个vpc下面,也添加了RDS的IP白名单报错:数据源配置有误,请检查,该怎么处理
    88
  • 10
    DataWorks操作报错合集之在 DataWorks 中运行了一个 Hologres 表的任务并完成了执行,但是在 Hologres 表中没有看到数据,该怎么解决
    126