从Tensorflow模型文件中解析并显示网络结构图(CKPT模型篇)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/T4/G6 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 从Tensorflow模型文件中解析并显示网络结构图(CKPT模型篇)
+关注继续查看

从Tensorflow模型文件中解析并显示网络结构图(CKPT模型篇)


最近看到一个巨牛的人工智能教程,分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。平时碎片时间可以当小说看,【点这里可以去膜拜一下大神的“小说”】。

上一篇文章《从Tensorflow模型文件中解析并显示网络结构图(pb模型篇)》中介绍了如何从pb模型文件中提取网络结构图并实现可视化,本文介绍如何从CKPT模型文件中提取网络结构图并实现可视化。理论上,既然能从pb模型文件中提取网络结构图,CKPT模型文件自然也不是问题,但是其中会有一些问题。

1 解析CKPT网络结构

解析CKPT网络结构的第一步是读取CKPT模型中的图文件,得到图的Graph对象后即可得到完整的网络结构。读取图文件示例代码如下所示。

    saver = tf.train.import_meta_graph(ckpt_path+'.meta',clear_devices=True)
    graph = tf.get_default_graph()
    with tf.Session( graph=graph) as sess:
        sess.run(tf.global_variables_initializer()) 
        saver.restore(sess,ckpt_path) 

调用graph.get_operations() 后即可得到当前图的所有计算节点,在利用Operation对象与Tensor对象之间的相互引用关系即可推断网络结构。但是需要注意的是,从meta文件中导入的图中获取计算节点存在如下问题。

包含反向梯度下降计算的所有节点

某些计算节点是按基础计算(加减乘除等)节点拆分成多个计算节点的,如BatchNorm,但其实是可以直接合并成一个节点的。

pb模型文件可以避免上面第一个问题,将CKPT模型转pb模型后,可以自动将反向梯度下降相关计算节点移除。对于第二点,pb模型文件会自动将基础计算组成一个计算节点,但是对于Tensor操作的函数如Slice等函数是无法合并的。因此,对于第2个问题,将CKPT模型转pb模型后,可以减少这类问题,但是无法避免。彻底避免的方法只能通过自己针对性地实现。经过以上分析,得出的结论是非常有必要将CKPT模型转pb模型。

2 自动将CKPT转pb,并提取网络图中节点

如果将CKPT自动转pb模型,那么就可以复用上一篇文章《从Tensorflow模型文件中解析并显示网络结构图(pb模型篇)》的代码。示例代码如下所示。

def read_graph_from_ckpt(ckpt_path,input_names,output_name ):   
    saver = tf.train.import_meta_graph(ckpt_path+'.meta',clear_devices=True)
    graph = tf.get_default_graph()
    with tf.Session( graph=graph) as sess:
        sess.run(tf.global_variables_initializer()) 
        saver.restore(sess,ckpt_path) 
        output_tf =graph.get_tensor_by_name(output_name) 
        pb_graph = tf.graph_util.convert_variables_to_constants( sess, graph.as_graph_def(), [output_tf.op.name]) 
     
    with tf.Graph().as_default() as g:
        tf.import_graph_def(pb_graph, name='')  
    with tf.Session(graph=g) as sess:
        OPS=get_ops_from_pb(g,input_names,output_name)
    return OPS

其中函数get_ops_from_pb在上一篇文章《从Tensorflow模型文件中解析并显示网络结构图(pb模型篇)》中已经实现。

3 测试

以《MobileNet V1官方预训练模型的使用》文中介绍的MobileNet V1网络结构为例,下载MobileNet_v1_1.0_192文件并压缩后,得到mobilenet_v1_1.0_192.ckpt.data-00000-of-00001、mobilenet_v1_1.0_192.ckpt.index、mobilenet_v1_1.0_192.ckpt.meta文件。我们还需要知道mobilenet_v1_1.0_192.ckpt模型对应的输入和输出Tensor对象的名称,官方提供的压缩包文件中并没有告知。一种方法是运行官方代码,把输入Tensor的名称打印出来。但是运行官方代码本身就需要一定的时间和精力,在在上一篇文章《从Tensorflow模型文件中解析并显示网络结构图(pb模型篇)》的代码实现中已经实现了将原始网络结构对应的字符串写入到ori_network.txt文件中。因此,可以先随意填写输入名称和输出名称,待生成ori_network.txt文件后,从文件中可以直观看到原始网络结构。ori_network.txt文件部分内容如下所示。

image

通过该文件可知,输入Tensor的名称为:batch:0,输出Tensor名称为:MobilenetV1/Predictions/Reshape_1:0。有了这些信息后,调用函数read_graph_from_ckpt得到静态图的节点列表对象ops,调用函数gen_graph(ops,"save/path/graph.html")后,在目录save/path中得到graph.html文件,打开graph.html后,显示结果如下。

image

4 源码地址

https://github.com/huachao1001/CNNGraph

相关文章
|
10月前
|
Ubuntu Shell TensorFlow
TensorFlow Lite开发系列之C++接口解析(二)
TensorFlow Lite开发系列之C++接口解析
204 0
TensorFlow Lite开发系列之C++接口解析(二)
|
10月前
|
Linux TensorFlow 算法框架/工具
TensorFlow Lite开发系列之python接口解析(一)
环境: tensorflow2.x, 一定要使用linux系统,后期转换模型windows会出现bug
167 0
TensorFlow Lite开发系列之python接口解析(一)
|
12月前
|
机器学习/深度学习 存储 人工智能
从Tensorflow模型文件中解析并显示网络结构图(pb模型篇)
从Tensorflow模型文件中解析并显示网络结构图(pb模型篇)
从Tensorflow模型文件中解析并显示网络结构图(pb模型篇)
|
TensorFlow 算法框架/工具
TF之TFOD-API:基于tensorflow框架利用TFOD-API脚本文件将YoloV3训练好的.ckpt模型文件转换为推理时采用的.pb文件
TF之TFOD-API:基于tensorflow框架利用TFOD-API脚本文件将YoloV3训练好的.ckpt模型文件转换为推理时采用的.pb文件
TF之TFOD-API:基于tensorflow框架利用TFOD-API脚本文件将YoloV3训练好的.ckpt模型文件转换为推理时采用的.pb文件
|
移动开发 TensorFlow 算法框架/工具
YOLO:将yolo的.weights文件转换为keras、tensorflow等模型所需的.h5文件的图文教程
YOLO:将yolo的.weights文件转换为keras、tensorflow等模型所需的.h5文件的图文教程
YOLO:将yolo的.weights文件转换为keras、tensorflow等模型所需的.h5文件的图文教程
|
算法 C++ Python
Tensorflow源码解析4 -- 图的节点 - Operation
# 1 概述 上文讲述了TensorFlow的核心对象,计算图Graph。Graph包含两大成员,节点和边。节点即为计算算子Operation,边则为计算数据Tensor。由起始节点Source出发,按照Graph的拓扑顺序,依次执行节点的计算,即可完成整图的计算,最后结束于终止节点Sink,并输出计算结果。 本文会对节点Operation进行详细讲解。 # 2 前端节点数据
1288 0
|
算法 Java TensorFlow
Tensorflow源码解析2 -- 前后端连接的桥梁 - Session
# 1 Session概述 Session是TensorFlow前后端连接的桥梁。用户利用session使得client能够与master的执行引擎建立连接,并通过session.run()来触发一次计算。它建立了一套上下文环境,封装了operation计算以及tensor求值的环境。 session创建时,系统会分配一些资源,比如graph引用、要连接的计算引擎的名称等。故计算完毕后
2870 0
|
机器学习/深度学习 算法 算法框架/工具
Tensorflow源码解析1 -- 内核架构和源码结构
# 1 主流深度学习框架对比 当今的软件开发基本都是分层化和模块化的,应用层开发会基于框架层。比如开发Linux Driver会基于Linux kernel,开发Android app会基于Android Framework。深度学习也不例外,框架层为上层模型开发提供了强大的多语言接口、稳定的运行时、高效的算子,以及完备的通信层和设备层管理层。因此,各大公司早早的就开始了深度学习框架的研
5813 0
|
算法 安全 TensorFlow
Tensorflow源码解析3 -- TensorFlow核心对象 - Graph
# 1 Graph概述 计算图Graph是TensorFlow的核心对象,TensorFlow的运行流程基本都是围绕它进行的。包括图的构建、传递、剪枝、按worker分裂、按设备二次分裂、执行、注销等。因此理解计算图Graph对掌握TensorFlow运行尤为关键。 # 2 默认Graph ### 默认图替换 之前讲解Session的时候就说过,一个Session只能r
3627 0
|
算法 TensorFlow 算法框架/工具
Tensorflow源码解析6 -- TensorFlow本地运行时
# 1 概述 TensorFlow后端分为四层,运行时层、计算层、通信层、设备层。运行时作为第一层,实现了session管理、graph管理等很多重要的逻辑,是十分关键的一层。根据任务分布的不同,运行时又分为本地运行时和分布式运行时。本地运行时,所有任务运行于本地同一进程内。而分布式运行时,则允许任务运行在不同机器上。 Tensorflow的运行,通过session搭建了前后端沟通的桥
2940 0
相关产品
人工智能平台 PAI
文字识别
视觉智能开放平台
推荐文章
更多
推荐镜像
更多