Adam 优化算法详解

简介: Adam 优化算法详解

据牛津字典的定义,优化是指最好或最有效地利用一种情况或资源,或者简单地使自己的事物达到最佳状态的行为。通常,如果可以对某事进行数学建模,则很有可能可以对其进行优化。这在深度学习领域起着至关重要的作用(可能是整个人工智能),因为您选择的优化算法可能是在数分钟,数小时或数天(有时甚至是数周)内获得高质量结果的区别。

image.png

在这篇文章中,我们将阐述:

  1. 什么是Adam Optimizer?
  2. 在深度学习模型中使用Adam进行优化有什么好处?
  3. Adam如何工作?

什么是Adam Optimizer?

Adam Optimizer是对SGD的扩展,可以代替经典的随机梯度下降法来更有效地更新网络权重。

请注意,Adam这个名字并不是首字母缩写词,实际上,作者(OpenAI的Diederik P. Kingma和多伦多大学的Jimmy Lei Ba)在论文中指出,该论文首次在ICLR 2015上作为会议论文发表,标题为Adam: A method for Stochastic Optimization, that the name is derived from adaptive moment estimation.。

作者毫不犹豫地列出了将Adam应用于非凸优化问题的许多迷人好处,我将继续分享以下内容:

简单地实现(我们将在本文的稍后部分中实现Adam,并且您将直接看到如何利用强大的深度学习框架以更少的代码行使实现变得更加简单。)

  1. 计算效率高
  2. 很少的内存需求
  3. 梯度的对角线重缩放不变(这意味着亚当将梯度乘以仅带正因子的对角矩阵是不变的,以便更好地理解此堆栈交换)
  4. 非常适合数据和/或参数较大的问题
  5. 适用于非固定目标
  6. 适用于非常嘈杂和/或稀疏梯度的问题
  7. 超参数具有直观的解释,通常需要很少的调整(我们将在配置部分中对此进行详细介绍)

Adam是如何工作的

简而言之,Adam使用动量和自适应学习率来加快收敛速度。

Momentum (动量)

在解释动量时,研究人员和从业人员都喜欢使用比球滚下山坡而向局部极小值更快滚动的类比法,但从本质上讲,我们必须知道的是,动量算法在相关方向上加速了随机梯度下降,如 以及抑制振荡。

为了将动量引入我们的神经网络,我们将时间元素添加到过去时间步长的更新向量中,并将其添加到当前更新向量中。这样可以使球的动量增加一定程度。可以用数学表示,如下图所示。

image.png

动量更新方法,其中θ是网络的参数,即权重,偏差或激活值,η是学习率,J是我们要优化的目标函数,γ是常数项,也称为动量。Vt-1(注意t-1是下标)是过去的时间步长,而Vt(注意t是下标)是当前的时间步长。

动量项γ通常被初始化为0.9或类似于Sebastian Ruder的论文《An overview of gradient descent optimization algorithm》中提到的项。

适应性学习率

通过将学习率降低到我们在AdaGrad,RMSprop,Adam和AdaDelta中看到的预定义时间表(schedule),可以将自适应学习率视为训练阶段的学习率调整。这也称为学习率时间表 有关该主题的更多详细信息,Suki Lau撰写了一篇有关该主题的非常有用的博客文章,称为“ Learning Rate Schedules and Adaptive Learning Rate Methods for Deep Learning.”。

在不花太多时间介绍AdaGrad优化算法的情况下,这里将解释RMSprop及其在AdaGrad上的改进以及如何随时间改变学习率。

RMSprop(即均方根传播)是由Geoff Hinton开发的,如《An Overview of Gradient Descent Optimization Algorithms》所述,其目的是解决AdaGrad的学习率急剧下降的问题。简而言之,RMSprop更改学习速率的速度比AdaGrad慢,但是RMSprop仍可从AdaGrad(更快的收敛速度)中受益-数学表达式请参见下图

image.png

E [g²] t的第一个方程是平方梯度的指数衰减平均值。Geoff Hinton建议将γ设置为0.9,而学习率η的默认值为0.001

这可以使学习率随着时间的流逝而适应,这很重要,因为这种现象也存在于Adam中。当我们将两者(Momentum 和RMSprop)放在一起时,我们得到了Adam —下图显示了详细的算法。

image.png

如果你听过吴恩达老师的深度学习课程,吴恩达老师说过“Adam可以理解为加了Momentum 的 RMSprop” ,上图的公式就是吴恩达老师这句话的由来。

参考资料

目录
相关文章
|
3天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
14天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
14天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
15天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
15天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
13 1
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
16天前
|
数据采集 缓存 算法
算法优化的常见策略有哪些
【10月更文挑战第20天】算法优化的常见策略有哪些
|
16天前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
16天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
15 0
下一篇
无影云桌面