Python的Wine数据集分类scikit-learn和K近邻实验

简介: Python的Wine数据集分类scikit-learn和K近邻实验

一、题目


请使用scikit-learn库和K近邻分类器完成Wine数据集的分类,训练比例自定。(数据下载: https://archive.ics.uci.edu/ml/datasets/Wine)


二、题目分析


这道题目就是获取数据然后分类的过程。首先在网站上下载好数据。然后回到Pycharm导入实验所需要的sklearn包,分别导入数据模块、切分训练集、测试集模块等。然后通过datasets的load_iris方法获取数据,分别用iris_x和iris_y获取data和target数据。然后通过train_test_split方法得到训练后的数据。最后实例化KNN模型,放入训练数据进行训练并且打印预测内容即可。


三、代码


from sklearn import datasets      
from sklearn.model_selection import train_test_split    
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()
iris_x = iris.data
iris_y = iris.target
print(iris_x)
print(iris_y)
x_train, x_test , y_train, y_test = train_test_split(iris_x, iris_y, test_size = 0.3)
print(y_train)
print(y_test)
knn = KNeighborsClassifier()    
knn.fit(x_train, y_train)      
print(knn.predict(x_test))           
print(y_test)


86ec99578cec4d6180d4fecad6263a78.png


四、运行结果


e7db490224494c108d5eaf85cb85b7bb.png


K最近邻 (k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的 机器学习算法 之一。 该方法的思路是:在特征空间中,如果一个样本附近的k个最近 (即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。


Scikit-learn(以前称为scikits.learn,也称为sklearn)是针对Python 编程语言的免费软件机器学习库 。它具有各种分类,回归和聚类算法,包括支持向量机,随机森林,梯度提升,k均值和DBSCAN,并且旨在与Python数值科学库NumPy和SciPy联合使用。


NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。


一个用python实现的科学计算,包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。


NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。


NumPy 的前身为 Numeric ,最早由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。



相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
深入调查研究Scikit-learn
【11月更文挑战第11天】
73 1
|
4月前
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
74 1
|
5月前
|
Python
Python办公自动化:xlwings对Excel进行分类汇总
Python办公自动化:xlwings对Excel进行分类汇总
136 1
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
88 3
|
3月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
223 1
|
3月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
102 3
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
45 1
|
3月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
102 0
|
4月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
44 1
|
4月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
113 2

热门文章

最新文章