深度学习之如何使用Grad-CAM绘制自己的特征提取图-(Pytorch代码,详细注释)神经网络可视化-绘制自己的热力图

简介: 深度学习之如何使用Grad-CAM绘制自己的特征提取图-(Pytorch代码,详细注释)神经网络可视化-绘制自己的热力图

众所周知,我们一般是将神经网络理解成一个黑匣子,因此我们往往不知道神经网络特征提取提取的具体是图片的那部分,因此Grad-CAM诞生了,我们只需要少量的代码,Grad-CAM,就可以识别对神经网络模型特征提取图实现可视化,然后使我们清楚地看到神经网络究竟是根据图像的那部分特征进行识别的。


CAM我们就不讲了,挺麻烦的还得重新训练网络才可以绘制自己的热力图,因此为了解决CAM的问题,Grad-CAM于2017年诞生,他通过对某一层卷积层输出进行一系列的处理,可以得到我们网络提取的特征图,进行可视化。


如果我们绘制一系列的热力图我们就可以清楚的看到神经网络如何对我们的网络进行学习的。(详细的可以看上面的论文)这里我们介绍如何使用简单的使用自己的数据集和自己的模型绘制自己的热力图


image.png


如图 我这里是(随便拿了个网络的玉米病斑数据,然后用resnet跑了测试了一下效果)要提取做的是识别这里面的病斑,然后我训练好我的模型,打入图片进行预测,之后对于其中最后一个卷积层的输出打入到Grad-CAM进行可视化。


image.png


可以清楚的看到,我的神经网络对于病斑的识别,完全是根据病斑本身来确定的。这说明我们的网络训练的非常好。


这里强调一下,BN层,激活函数层的输出是无法可视化的,选择输出那一层会报错,自己跑自己的时候多加调试。


咱们的代码是参考Grad-CAM简介_太阳花的小绿豆的博客-CSDN博客_grad-cam这位大佬的,进行了一部分更细化的修改和对于一些细节的问题进行了优化,使我们更简单的就就可以实现自己网络特征层的可视化。


image.png


很方便的替换自己的模型和数据集绘制热力图,有问题可以在评论区指出,看到会回复

import os
import numpy as np
from PIL import Image
from torchvision import transforms
from utils import GradCAM, show_cam_on_image, center_crop_img
import torch
from matplotlib import pyplot as plt
from torch import nn
from torchvision.transforms import transforms
def main():
    #这个下面放置你网络的代码,因为载入权重的时候需要读取网络代码,这里我建议直接从自己的训练代码中原封不动的复制过来即可,我这里因为跑代码使用的是Resnet,所以这里将resent的网络复制到这里即可
    class BasicBlock(nn.Module):
        expansion = 1
        def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
            super(BasicBlock, self).__init__()
            self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                                   kernel_size=3, stride=stride, padding=1, bias=False)
            self.bn1 = nn.BatchNorm2d(out_channel)
            self.relu = nn.ReLU()
            self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                                   kernel_size=3, stride=1, padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(out_channel)
            self.downsample = downsample
        def forward(self, x):
            identity = x
            if self.downsample is not None:
                identity = self.downsample(x)
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            out += identity
            out = self.relu(out)
            return out
    class Bottleneck(nn.Module):
        """
        注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
        但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
        这么做的好处是能够在top1上提升大概0.5%的准确率。
        可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
        """
        expansion = 4
        def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                     groups=1, width_per_group=64):
            super(Bottleneck, self).__init__()
            width = int(out_channel * (width_per_group / 64.)) * groups
            self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                                   kernel_size=1, stride=1, bias=False)  # squeeze channels
            self.bn1 = nn.BatchNorm2d(width)
            # -----------------------------------------
            self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                                   kernel_size=3, stride=stride, bias=False, padding=1)
            self.bn2 = nn.BatchNorm2d(width)
            # -----------------------------------------
            self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,
                                   kernel_size=1, stride=1, bias=False)  # unsqueeze channels
            self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
            self.relu = nn.ReLU(inplace=True)
            self.downsample = downsample
        def forward(self, x):
            identity = x
            if self.downsample is not None:
                identity = self.downsample(x)
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
            out = self.conv3(out)
            out = self.bn3(out)
            out += identity
            out = self.relu(out)
            return out
    class ResNet(nn.Module):
        def __init__(self,
                     block,
                     blocks_num,
                     num_classes=5,
                     include_top=True,
                     groups=1,
                     width_per_group=64):
            super(ResNet, self).__init__()
            self.include_top = include_top
            self.in_channel = 64
            self.groups = groups
            self.width_per_group = width_per_group
            self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                                   padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(self.in_channel)
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            self.layer1 = self._make_layer(block, 64, blocks_num[0])
            self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
            self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
            self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
            if self.include_top:
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
                self.fc = nn.Linear(512 * block.expansion, num_classes)
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        def _make_layer(self, block, channel, block_num, stride=1):
            downsample = None
            if stride != 1 or self.in_channel != channel * block.expansion:
                downsample = nn.Sequential(
                    nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(channel * block.expansion))
            layers = []
            layers.append(block(self.in_channel,
                                channel,
                                downsample=downsample,
                                stride=stride,
                                groups=self.groups,
                                width_per_group=self.width_per_group))
            self.in_channel = channel * block.expansion
            for _ in range(1, block_num):
                layers.append(block(self.in_channel,
                                    channel,
                                    groups=self.groups,
                                    width_per_group=self.width_per_group))
            return nn.Sequential(*layers)
        def forward(self, x):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
            if self.include_top:
                x = self.avgpool(x)
                x = torch.flatten(x, 1)
                x = self.fc(x)
            return x
    def resnet34(num_classes=1000, include_top=True):
        # https://download.pytorch.org/models/resnet34-333f7ec4.pth
        return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
    def resnet50(num_classes=1000, include_top=True):
        # https://download.pytorch.org/models/resnet50-19c8e357.pth
        return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
    def resnet101(num_classes=1000, include_top=True):
        # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
        return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
    def resnext50_32x4d(num_classes=1000, include_top=True):
        # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
        groups = 32
        width_per_group = 4
        return ResNet(Bottleneck, [3, 4, 6, 3],
                      num_classes=num_classes,
                      include_top=include_top,
                      groups=groups,
                      width_per_group=width_per_group)
    def resnext101_32x8d(num_classes=1000, include_top=True):
        # https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
        groups = 32
        width_per_group = 8
        return ResNet(Bottleneck, [3, 4, 23, 3],
                      num_classes=num_classes,
                      include_top=include_top,
                      groups=groups,
                      width_per_group=width_per_group)
    net = resnet34()
    device = torch.device("cpu")
    net.load_state_dict(torch.load("./transfer-learning-resnet.pth", map_location=device))  # 载入训练的resnet模型权重,你将训练的模型权重放到当前文件夹下即可
    target_layers = [net.layer4[-1]] #这里是 看你是想看那一层的输出,我这里是打印的resnet最后一层的输出,你也可以根据需要修改成自己的
    print(target_layers)
    data_transform = transforms.Compose([
                                         transforms.ToTensor(),
                                         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
    # 导入图片
    img_path = "./38.jpg"#这里是导入你需要测试图片
    image_size = 500#训练图像的尺寸,在你训练图像的时候图像尺寸是多少这里就填多少
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path).convert('RGB')#将图片转成RGB格式的
    img = np.array(img, dtype=np.uint8) #转成np格式
    img = center_crop_img(img, image_size) #将测试图像裁剪成跟训练图片尺寸相同大小的
    # [C, H, W]
    img_tensor = data_transform(img)#简单预处理将图片转化为张量
    # expand batch dimension
    # [C, H, W] -> [N, C, H, W]
    input_tensor = torch.unsqueeze(img_tensor, dim=0) #增加一个batch维度
    cam = GradCAM(model=net, target_layers=target_layers, use_cuda=False)
    grayscale_cam = cam(input_tensor=input_tensor)
    grayscale_cam = grayscale_cam[0, :]
    visualization = show_cam_on_image(img.astype(dtype=np.float32) / 255.,
                                      grayscale_cam,
                                      use_rgb=True)
    plt.imshow(visualization)
    plt.savefig('./result.png')#将热力图的结果保存到本地当前文件夹
    plt.show()
if __name__ == '__main__':
    main()


util.py


这是需要调用的库文件的代码,你新建一个.py文件与上述的同放在一个文件夹下即可

import cv2
import numpy as np
class ActivationsAndGradients:
    """ Class for extracting activations and
    registering gradients from targeted intermediate layers """
    def __init__(self, model, target_layers, reshape_transform):
        self.model = model
        self.gradients = []
        self.activations = []
        self.reshape_transform = reshape_transform
        self.handles = []
        for target_layer in target_layers:
            self.handles.append(
                target_layer.register_forward_hook(
                    self.save_activation))
            # Backward compatibility with older pytorch versions:
            if hasattr(target_layer, 'register_full_backward_hook'):
                self.handles.append(
                    target_layer.register_full_backward_hook(
                        self.save_gradient))
            else:
                self.handles.append(
                    target_layer.register_backward_hook(
                        self.save_gradient))
    def save_activation(self, module, input, output):
        activation = output
        if self.reshape_transform is not None:
            activation = self.reshape_transform(activation)
        self.activations.append(activation.cpu().detach())
    def save_gradient(self, module, grad_input, grad_output):
        # Gradients are computed in reverse order
        grad = grad_output[0]
        if self.reshape_transform is not None:
            grad = self.reshape_transform(grad)
        self.gradients = [grad.cpu().detach()] + self.gradients
    def __call__(self, x):
        self.gradients = []
        self.activations = []
        return self.model(x)
    def release(self):
        for handle in self.handles:
            handle.remove()
class GradCAM:
    def __init__(self,
                 model,
                 target_layers,
                 reshape_transform=None,
                 use_cuda=False):
        self.model = model.eval()
        self.target_layers = target_layers
        self.reshape_transform = reshape_transform
        self.cuda = use_cuda
        if self.cuda:
            self.model = model.cuda()
        self.activations_and_grads = ActivationsAndGradients(
            self.model, target_layers, reshape_transform)
    """ Get a vector of weights for every channel in the target layer.
        Methods that return weights channels,
        will typically need to only implement this function. """
    @staticmethod
    def get_cam_weights(grads):
        return np.mean(grads, axis=(2, 3), keepdims=True)
    @staticmethod
    def get_loss(output, target_category):
        loss = 0
        for i in range(len(target_category)):
            loss = loss + output[i, target_category[i]]
        return loss
    def get_cam_image(self, activations, grads):
        weights = self.get_cam_weights(grads)
        weighted_activations = weights * activations
        cam = weighted_activations.sum(axis=1)
        return cam
    @staticmethod
    def get_target_width_height(input_tensor):
        width, height = input_tensor.size(-1), input_tensor.size(-2)
        return width, height
    def compute_cam_per_layer(self, input_tensor):
        activations_list = [a.cpu().data.numpy()
                            for a in self.activations_and_grads.activations]
        grads_list = [g.cpu().data.numpy()
                      for g in self.activations_and_grads.gradients]
        target_size = self.get_target_width_height(input_tensor)
        cam_per_target_layer = []
        # Loop over the saliency image from every layer
        for layer_activations, layer_grads in zip(activations_list, grads_list):
            cam = self.get_cam_image(layer_activations, layer_grads)
            cam[cam < 0] = 0  # works like mute the min-max scale in the function of scale_cam_image
            scaled = self.scale_cam_image(cam, target_size)
            cam_per_target_layer.append(scaled[:, None, :])
        return cam_per_target_layer
    def aggregate_multi_layers(self, cam_per_target_layer):
        cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
        cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
        result = np.mean(cam_per_target_layer, axis=1)
        return self.scale_cam_image(result)
    @staticmethod
    def scale_cam_image(cam, target_size=None):
        result = []
        for img in cam:
            img = img - np.min(img)
            img = img / (1e-7 + np.max(img))
            if target_size is not None:
                img = cv2.resize(img, target_size)
            result.append(img)
        result = np.float32(result)
        return result
    def __call__(self, input_tensor, target_category=None):
        if self.cuda:
            input_tensor = input_tensor.cuda()
        # 正向传播得到网络输出logits(未经过softmax)
        output = self.activations_and_grads(input_tensor)
        if isinstance(target_category, int):
            target_category = [target_category] * input_tensor.size(0)
        if target_category is None:
            target_category = np.argmax(output.cpu().data.numpy(), axis=-1)
            print(f"category id: {target_category}")
        else:
            assert (len(target_category) == input_tensor.size(0))
        self.model.zero_grad()
        loss = self.get_loss(output, target_category)
        loss.backward(retain_graph=True)
        # In most of the saliency attribution papers, the saliency is
        # computed with a single target layer.
        # Commonly it is the last convolutional layer.
        # Here we support passing a list with multiple target layers.
        # It will compute the saliency image for every image,
        # and then aggregate them (with a default mean aggregation).
        # This gives you more flexibility in case you just want to
        # use all conv layers for example, all Batchnorm layers,
        # or something else.
        cam_per_layer = self.compute_cam_per_layer(input_tensor)
        return self.aggregate_multi_layers(cam_per_layer)
    def __del__(self):
        self.activations_and_grads.release()
    def __enter__(self):
        return self
    def __exit__(self, exc_type, exc_value, exc_tb):
        self.activations_and_grads.release()
        if isinstance(exc_value, IndexError):
            # Handle IndexError here...
            print(
                f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
            return True
def show_cam_on_image(img: np.ndarray,
                      mask: np.ndarray,
                      use_rgb: bool = False,
                      colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
    """ This function overlays the cam mask on the image as an heatmap.
    By default the heatmap is in BGR format.
    :param img: The base image in RGB or BGR format.
    :param mask: The cam mask.
    :param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
    :param colormap: The OpenCV colormap to be used.
    :returns: The default image with the cam overlay.
    """
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
    if use_rgb:
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    heatmap = np.float32(heatmap) / 255
    if np.max(img) > 1:
        raise Exception(
            "The input image should np.float32 in the range [0, 1]")
    cam = heatmap + img
    cam = cam / np.max(cam)
    return np.uint8(255 * cam)
def center_crop_img(img: np.ndarray, size: int):
    h, w, c = img.shape
    if w == h == size:
        return img
    if w < h:
        ratio = size / w
        new_w = size
        new_h = int(h * ratio)
    else:
        ratio = size / h
        new_h = size
        new_w = int(w * ratio)
    img = cv2.resize(img, dsize=(new_w, new_h))
    if new_w == size:
        h = (new_h - size) // 2
        img = img[h: h+size]
    else:
        w = (new_w - size) // 2
        img = img[:, w: w+size]
    return img


相关文章
|
9天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
36 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
175 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
24天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
82 3
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
79 1
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。