线性规划求解第一的MindOpt如何使用Python语言的API建模及优化

简介: MindOpt是一款高效的优化算法软件包,求解算法实现了线性规划(LP)、混合整数线性规划(MILP)、二次规划(QP),可以支持命令行、c、c++、java和python调用。接下来我们将发布一系列文章,讲述各个语言如何使用 MindOpt 来求解数学规划问题

本篇文章是系列文章的开篇,下文会分享小编个人线性规划的定义,然后举个一例题,最后将讲述使用 MindOpt Python 语言的 API 来建模以及求解 线性规划问题示例 中的问题以及求解的结果


MindOpt Python、C、C++语言求解LP、MILP、QP问题系列


安装MindOpt

用户可以点这里下载安装MindOpt优化求解器,免费的。找不到安装步骤点这里

(官网https://opt.aliyun.com有更多信息等着您哟!)


线性规划

我们先介绍一下线性规划我个人认为是在线性的目标和约束中,找出一个最优解(如最大利润或最低成本)。线性规划可以广泛的应用在我们的生活中,解决资源利用、人力调配、生产安排等问题。


入门案例

一位员工每天要负责处理a任务(生成零部件) 和b任务(组装产品)。其参与a任务的报酬为100元/小时,b任务的报酬为150元/小时。工厂要求该员工每天在每个任务上花费至少 3 个小时。已知该员工每天工作8小时(因此在 6 小时之外,可以自行决定 2 小时如何工作),那么他该如何在两项任务上分配时间以得到尽可能多的报酬?


  • 以上问题可以被称为任务分配问题,也可以被视为一个简单的排产排程问题,由于该员工要决策时间分配,我们引入决策变量 Xa和 Xb用于表示该工人投入在任务和任务中的时长。由问题描述可知,这些变量需要满足Xa+Xb=8 和 Xa>=3,Xb>=3。
  • 此外,该工人的目标是获得尽可能多的报酬。在定义如上三要素后,我们可以建立如下的数学规划问题
  • 决策变量: Xa,Xb
  • 目标函数: maxmize 100Xa + 150Xb
  •     约束:  s.t.  Xa + Xb = 8
  •                      Xa>=3 , Xb>=3
  • 这个列题最后求出的最优解是每天参与a任务三小时、b任务5小时。

image.png


在上文的例子,是一个简单的线性规划问题,只有两个决策变量,而线性规划问题示例中的问题涉及到四个决策变量,人工去求最优解呢,需要先把线性规划问题转换为标准形式,然后制表、入基、出基、换基,最后迭代得出最优解,过程比较复杂。


那么我们可以使用商用求解器 MindOpt ,让计算机来帮助我们求解。


线性规划问题可以用以下数学公式来描述:

image.png

公式参考自:https://solver.damo.alibaba.com/doc/html/model/lp/linear%20problem.html


进阶算例-实际例子算

要找到一个和线性规划问题示例中的问题相匹配的文字列题比较困难,所以我们在这里做一个假设,把它当成是一个人力调配的问题,求解的是一个目标函数的最小值,也就是花费最低成本去解决问题


线性规划问题示例:

image.png


Python+MindOpt代码实现

# 引入python包frommindoptpyimport*if__name__=="__main__":
MDO_INFINITY=MdoModel.get_infinity()
# Step 1.创建模型并更改参数。model=MdoModel()
try:
# Step 2. 输入模型。#  改为最小化问题。#  通过 mindoptpy.MdoModel.set_int_attr() 将目标函数设置为 最小化 model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1)
#  添加变量。#  通过mindoptpy.MdoModel.add_var() 来添加四个优化变量,#  定义其下界、上界、名称和类型。x= []
x.append(model.add_var(0.0,         10.0, 1.0, None, "x0", False))
x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x1", False))
x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x2", False))
x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x3", False))
#  添加约束。#  注意这里的非零元素是按行顺序输入的。model.add_cons(1.0, MDO_INFINITY, 1.0*x[0] +1.0*x[1] +2.0*x[2] +3.0*x[3], "c0")
model.add_cons(1.0,          1.0, 1.0*x[0]              -1.0*x[2] +6.0*x[3], "c1")
# Step 3. 解决问题并填充结果。# 调用 mindoptpy.MdoModel.solve_prob() 求解优化问题,# 并用 mindoptpy.MdoModel.display_results() 来查看优化结果model.solve_prob()
model.display_results()
# 调用 mindoptpy.MdoModel.get_status() 来检查求解器的优化状态,# 并通过 mindoptpy.MdoModel.get_real_attr() 和 # mindoptpy.MdoVar.get_real_attr() 来获取目标值和最优解。status_code, status_msg=model.get_status()
ifstatus_msg=="OPTIMAL":
print("Optimizer terminated with an OPTIMAL status (code {0}).".format(status_code))
print("Primal objective : {0}".format(round(model.get_real_attr(MDO_REAL_ATTR.PRIMAL_OBJ_VAL), 2)))
forcurr_xinx:
print(" - x[{0}]          : {1}".format(curr_x.get_index(), round(curr_x.get_real_attr(MDO_REAL_ATTR.PRIMAL_SOLN), 2)))
else:
print("Optimizer terminated with a(n) {0} status (code {1}).".format(status_msg, status_code))
# 如果求解异常,在这里将会看见它的状态码和错误原因exceptMdoErrorase:
print("Received Mindopt exception.")
print(" - Code          : {}".format(e.code))
print(" - Reason        : {}".format(e.message))
exceptExceptionase:
print("Received exception.")
print(" - Reason        : {}".format(e))
finally:
# Step 4. 释放模型。# 调用 mindoptpy.MdoModel.free_mdl() 来释放内存# (多次运行部分脚本的时候有些变量已经被用,所以调用这个api进行清除)model.free_mdl()
MindOpt求解的结果
# 模型摘要Modelsummary.
-Num. variables     : 4-Num. constraints   : 2-Num. nonzeros      : 7-Boundrange        : [1.0e+00,1.0e+01] #限制范围-Objectiverange    : [1.0e+00,1.0e+00] #目标范围-Matrixrange       : [1.0e+00,6.0e+00] #矩阵范围Presolverstarted.
Presolverterminated. Time : 0.001sSimplexmethodstarted.
IterationObjectiveDualInf.     PrimalInf.     Time00.00000e+000.0000e+001.0000e+000.00s24.00000e-010.0000e+000.0000e+000.01sPostsolverstarted.
Simplexmethodterminated. Time : 0.004s# 决策变量的最佳取值OptimizerterminatedwithanOPTIMALstatus (code1).
Primalobjective : 0.4-x[0]          : 0.0-x[1]          : 0.0-x[2]          : 0.2-x[3]          : 0.2# 展示了使用的单纯形法,优化器的状态,优化使用的时间Optimizersummary.
-Optimizerused     : Simplexmethod-Optimizerstatus   : OPTIMAL-Totaltime         : 0.005s# 目标函数的实现Solutionsummary.       Primalsolution-Objective          : 4.0000000000e-01

联系我们

钉钉群号:32451444

邮箱地址:solver.damo@list.alibaba-inc.com

更多更新通知:https://solver.damo.alibaba.com


相关文章
|
9天前
|
算法 Java 编译器
优化Python代码性能的实用技巧
提高Python代码性能是每个开发者的关注焦点之一。本文将介绍一些实用的技巧和方法,帮助开发者优化他们的Python代码,提升程序的执行效率和性能。
|
1天前
|
机器学习/深度学习 算法 数据可视化
统计建模——模型——python为例
统计建模——模型——python为例
|
1天前
|
数据采集 机器学习/深度学习 数据可视化
python——pycharm进行统计建模
python——pycharm进行统计建模
|
2天前
|
缓存 应用服务中间件 数据库
Python Web Service开发及优化
随着互联网的快速发展,Web服务已成为现代技术的核心。Python作为一种功能强大且易于学习的编程语言,在Web服务开发领域占据着重要地位。Python Web服务开发的重要性在于它能够提供高效、可扩展且易于维护的解决方案。本篇博客将探讨如何使用Python的Flask框架、Gunicorn WSGI服务器和Nginx网页服务器来实现高性能的Web服务。
|
2天前
|
JSON API 数据格式
详细介绍下PYTHON API的用法
详细介绍下PYTHON API的用法
|
4天前
|
缓存 API 数据库
构建高效Python Web应用:Flask框架与RESTful API设计原则
【5月更文挑战第20天】 在现代Web开发中,构建一个轻量级且高效的后端服务至关重要。本文将深入探讨如何使用Python的Flask框架结合RESTful API设计原则来创建可扩展和易于维护的Web应用程序。我们将通过分析Flask的核心特性,以及如何利用它来实现资源的合理划分、接口的版本控制和请求处理优化等,来指导读者打造高性能的API服务。文中不仅提供了理论指导,还包括了实践案例,旨在帮助开发者提升开发效率,并增强应用的稳定性和用户体验。
|
4天前
|
大数据 Python
【Python DataFrame专栏】DataFrame内存管理与优化:大型数据集处理技巧
【5月更文挑战第20天】本文介绍了使用Python的pandas库优化DataFrame内存管理的六个技巧:1) 查看DataFrame内存占用;2) 使用高效数据类型,如`category`和`int32`;3) 仅读取需要的列;4) 分块处理大数据集;5) 利用`inplace`参数节省内存;6) 使用`eval()`和`query()`进行快速筛选。这些方法有助于处理大型数据集时提高效率。
【Python DataFrame专栏】DataFrame内存管理与优化:大型数据集处理技巧
|
5天前
|
存储 数据挖掘 数据处理
【Python DataFrame 专栏】优化 DataFrame 性能:提升数据处理效率的秘诀
【5月更文挑战第19天】优化 Python DataFrame 性能的关键点包括:选择合适的数据类型以节省内存,避免重复计算,利用向量化操作,考虑使用 `iterrows` 或 `itertuples` 迭代,优化索引以及借助 `Cython` 或 `Numba` 加速代码执行。通过这些策略,能提升数据处理效率,应对大规模数据挑战。
【Python DataFrame 专栏】优化 DataFrame 性能:提升数据处理效率的秘诀
|
7天前
|
缓存 监控 API
利用Python构建高性能的Web API后端服务
随着微服务架构的普及和RESTful API的广泛应用,构建高性能、可扩展的Web API后端服务变得尤为重要。本文将探讨如何利用Python这一强大且灵活的语言,结合现代Web框架和工具,构建高效、可靠的Web API后端服务。我们将分析Python在Web开发中的优势,介绍常用的Web框架,并通过实际案例展示如何设计并实现高性能的API服务。
|
9天前
|
存储 缓存 监控
利用Python和Flask构建RESTful API的实战指南
在当今的软件开发中,RESTful API已成为前后端分离架构中的核心组件。本文将带你走进实战,通过Python的Flask框架,一步步构建出高效、安全的RESTful API。我们将从项目初始化、路由设置、数据验证、错误处理到API文档生成,全方位地探讨如何构建RESTful API,并给出一些实用的最佳实践和优化建议。