`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
容器镜像服务 ACR,镜像仓库100个 不限时长
注册配置 MSE Nacos/ZooKeeper,182元/月
简介: `transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。

一、引言

transformers库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,transformers库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过pipeline()函数方便地加载和使用,而generate()函数则是用于生成文本的核心函数。

二、pipeline()函数的使用

pipeline()函数是transformers库中一个非常重要的函数,它允许用户通过简单的API调用加载和使用预训练的模型。对于文本生成任务,我们可以使用text-generation类型的pipeline。

示例代码

from transformers import pipeline

# 加载预训练的文本生成模型
generator = pipeline("text-generation", model="gpt2-medium")

# 使用模型生成文本
prompt = "In a world where machines can think, "
output = generator(prompt, max_length=50, num_return_sequences=1)

print(output[0]['generated_text'])

代码解释

  1. 导入必要的库:首先,我们导入了transformers库中的pipeline函数。
  2. 加载预训练的文本生成模型:通过调用pipeline()函数并传入"text-generation"作为参数,我们告诉库我们想要加载一个文本生成模型。然后,我们指定了模型的名称"gpt2-medium",这是Hugging Face Model Hub上的一个预训练模型。库会自动下载并加载这个模型。
  3. 使用模型生成文本:加载完模型后,我们可以使用它来生成文本。我们传入一个提示(prompt)作为输入,然后指定一些参数来控制生成的文本。在这个例子中,我们指定了max_length=50来限制生成的文本长度,以及num_return_sequences=1来指定只返回一条生成的文本。最后,我们打印出生成的文本。

三、generate()函数的使用

虽然pipeline()函数提供了方便的API来加载和使用模型,但在某些情况下,我们可能想要更直接地控制模型的生成过程。这时,我们可以使用模型的generate()函数。

示例代码

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

# 加载预训练的模型和分词器
model = GPT2LMHeadModel.from_pretrained("gpt2-medium")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium")

# 准备输入
prompt = "In a world where machines can think, "
input_ids = tokenizer.encode(prompt, return_tensors="pt")

# 使用模型生成文本
output = model.generate(input_ids, max_length=50, num_beams=1, no_repeat_ngram_size=2, early_stopping=True)

# 将生成的ID转换为文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print(generated_text)

代码解释

  1. 导入必要的库和模型:首先,我们导入了GPT2LMHeadModelGPT2Tokenizer类,以及PyTorch库。这些类分别用于加载GPT-2模型和对应的分词器。
  2. 加载预训练的模型和分词器:我们使用from_pretrained()函数加载了预训练的GPT-2模型和分词器。这些资源会自动从Hugging Face Model Hub下载。
  3. 准备输入:我们将提示(prompt)文本编码为模型可以理解的输入ID。这是通过调用分词器的encode()函数完成的。我们还指定了return_tensors="pt"来返回PyTorch张量。
  4. 使用模型生成文本:然后,我们调用模型的generate()函数来生成文本。这个函数接受输入ID作为输入,并返回生成的文本ID。我们指定了一些参数来控制生成的文本,如max_lengthnum_beams(用于beam search的beam数量)、no_repeat_ngram_size(用于避免重复n-gram的n值)和early_stopping(是否提前停止生成)。
  5. 将生成的ID转换为文本:最后,我们将生成的ID解码为文本。这是通过调用分词器的decode()函数完成的。我们还指定了skip_special_tokens=True来跳过特殊标记(如[PAD]、[UNK]
    处理结果:

    一、引言

    transformers库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,transformers库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过pipeline()函数方便地加载和使用,而generate()函数则是用于生成文本的核心函数。

    二、pipeline()函数的使用

    pipeline()函数是transformers库中一个非常重要的函数,它允许用户通过简单的API调用加载和使用预训练的模型。对于文本生成任务,我们可以使用text-generation类型的pipeline。

    示例代码

    ```python

    加载预训练的文本生成模型

    使用模型生成文本

    print(output[0]['generated_text'])
  6. 导入必要的库:首先,我们导入了transformers库中的pipeline函数。
    加载预训练的文本生成模型:通过调用pipeline()函数并传入"text-generation"作为参数,我们告诉库我们想要加载一个文本生成模型。然后,我们指定了模型的名称"gpt2-medium",这是Hugging Face Model Hub上的一个预训练模型。库会自动下载并加载这个模型。
    使用模型生成文本:加载完模型后,我们可以使用它来生成文本。我们传入一个提示(prompt)作为输入,然后指定一些参数来控制生成的文本。在这个例子中,我们指定了max_length=50来限制生成的文本长度,以及num_return_sequences=1来指定只返回一条生成的文本。最后,我们打印出生成的文本。

    三、generate()函数的使用

    虽然pipeline()函数提供了方便的API来加载和使用模型,但在某些情况下,我们可能想要更直接地控制模型的生成过程。这时,我们可以使用模型的generate()函数。

    示例代码

    ```python

    加载预训练的模型和分词器

    准备输入

    使用模型生成文本

    将生成的ID转换为文本

    print(generated_text)
  7. 导入必要的库和模型:首先,我们导入了GPT2LMHeadModelGPT2Tokenizer类,以及PyTorch库。这些类分别用于加载GPT-2模型和对应的分词器。
    加载预训练的模型和分词器:我们使用from_pretrained()函数加载了预训练的GPT-2模型和分词器。这些资源会自动从Hugging Face Model Hub下载。
    准备输入:我们将提示(prompt)文本编码为模型可以理解的输入ID。这是通过调用分词器的encode()函数完成的。我们还指定了return_tensors="pt"来返回PyTorch张量。
    使用模型生成文本:然后,我们调用模型的generate()函数来生成文本。这个函数接受输入ID作为输入,并返回生成的文本ID。我们指定了一些参数来控制生成的文本,如max_lengthnum_beams(用于beam search的beam数量)、no_repeat_ngram_size(用于避免重复n-gram的n值)和early_stopping(是否提前停止生成)。
    将生成的ID转换为文本:最后,我们将生成的ID解码为文本。这是通过调用分词器的decode()函数完成的。我们还指定了skip_special_tokens=True来跳过特殊标记(如[PAD]、[UNK]
相关文章
|
4月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
254 17
|
2月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
|
JSON 物联网 API
阿里云API芝士堂[物模型管理][模型]
将近一年没有关注阿里云物联网的api,最近看了下官网的文档,api列表中赫然多出了物模型的管理和使用两大类.这也难怪,物模型被誉为物联网世界的原子. 通过物模型可以有效的使用属性,服务和事件就可以表示出纷繁复杂和多姿多彩的物联网世界中的各种类型的设备;目前物模型并没有统一的规范,所以阿里,小米, 京东和中移动等大厂,都是各自制定一套自己的规范;阿里云这面主要是在自家的ICA联盟定义了一套物模型的规范.本文也从实践角度分享一下物模型相关api的使用.
558 0
|
23天前
|
JSON API 数据格式
淘宝/天猫图片搜索API接口,json返回数据。
淘宝/天猫平台虽未开放直接的图片搜索API,但可通过阿里妈妈淘宝联盟或天猫开放平台接口实现类似功能。本文提供基于淘宝联盟的图片关联商品搜索Curl示例及JSON响应说明,适用于已获权限的开发者。如需更高精度搜索,可选用阿里云视觉智能API。
|
21天前
|
JSON API 数据安全/隐私保护
深度分析淘宝卖家订单详情API接口,用json返回数据
淘宝卖家订单详情API(taobao.trade.fullinfo.get)是淘宝开放平台提供的重要接口,用于获取单个订单的完整信息,包括订单状态、买家信息、商品明细、支付与物流信息等,支撑订单管理、ERP对接及售后处理。需通过appkey、appsecret和session认证,并遵守调用频率与数据权限限制。本文详解其使用方法并附Python调用示例。
|
26天前
|
监控 算法 API
电商API接口对接实录:淘宝优惠券接口对接处理促销监控系统
在电商开发中,淘宝详情页的“券后价计算”是极易出错的环节。本文作者结合实战经验,分享了因忽略满减券门槛、有效期、适用范围等导致的踩坑经历,并提供了完整的解决方案,包括淘宝API签名生成、券后价计算逻辑、常见坑点及优化建议,助力开发者精准实现券后价功能,避免业务损失。
|
1月前
|
JSON 算法 API
淘宝商品评论API接口核心解析,json数据返回
淘宝商品评论API是淘宝开放平台提供的数据服务接口,允许开发者通过编程方式获取指定商品的用户评价数据,包括文字、图片、视频评论及评分等。其核心价值在于:

热门文章

最新文章