`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
应用实时监控服务-应用监控,每月50GB免费额度
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: `transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。

一、引言

transformers库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,transformers库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过pipeline()函数方便地加载和使用,而generate()函数则是用于生成文本的核心函数。

二、pipeline()函数的使用

pipeline()函数是transformers库中一个非常重要的函数,它允许用户通过简单的API调用加载和使用预训练的模型。对于文本生成任务,我们可以使用text-generation类型的pipeline。

示例代码

from transformers import pipeline

# 加载预训练的文本生成模型
generator = pipeline("text-generation", model="gpt2-medium")

# 使用模型生成文本
prompt = "In a world where machines can think, "
output = generator(prompt, max_length=50, num_return_sequences=1)

print(output[0]['generated_text'])

代码解释

  1. 导入必要的库:首先,我们导入了transformers库中的pipeline函数。
  2. 加载预训练的文本生成模型:通过调用pipeline()函数并传入"text-generation"作为参数,我们告诉库我们想要加载一个文本生成模型。然后,我们指定了模型的名称"gpt2-medium",这是Hugging Face Model Hub上的一个预训练模型。库会自动下载并加载这个模型。
  3. 使用模型生成文本:加载完模型后,我们可以使用它来生成文本。我们传入一个提示(prompt)作为输入,然后指定一些参数来控制生成的文本。在这个例子中,我们指定了max_length=50来限制生成的文本长度,以及num_return_sequences=1来指定只返回一条生成的文本。最后,我们打印出生成的文本。

三、generate()函数的使用

虽然pipeline()函数提供了方便的API来加载和使用模型,但在某些情况下,我们可能想要更直接地控制模型的生成过程。这时,我们可以使用模型的generate()函数。

示例代码

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

# 加载预训练的模型和分词器
model = GPT2LMHeadModel.from_pretrained("gpt2-medium")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium")

# 准备输入
prompt = "In a world where machines can think, "
input_ids = tokenizer.encode(prompt, return_tensors="pt")

# 使用模型生成文本
output = model.generate(input_ids, max_length=50, num_beams=1, no_repeat_ngram_size=2, early_stopping=True)

# 将生成的ID转换为文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print(generated_text)

代码解释

  1. 导入必要的库和模型:首先,我们导入了GPT2LMHeadModelGPT2Tokenizer类,以及PyTorch库。这些类分别用于加载GPT-2模型和对应的分词器。
  2. 加载预训练的模型和分词器:我们使用from_pretrained()函数加载了预训练的GPT-2模型和分词器。这些资源会自动从Hugging Face Model Hub下载。
  3. 准备输入:我们将提示(prompt)文本编码为模型可以理解的输入ID。这是通过调用分词器的encode()函数完成的。我们还指定了return_tensors="pt"来返回PyTorch张量。
  4. 使用模型生成文本:然后,我们调用模型的generate()函数来生成文本。这个函数接受输入ID作为输入,并返回生成的文本ID。我们指定了一些参数来控制生成的文本,如max_lengthnum_beams(用于beam search的beam数量)、no_repeat_ngram_size(用于避免重复n-gram的n值)和early_stopping(是否提前停止生成)。
  5. 将生成的ID转换为文本:最后,我们将生成的ID解码为文本。这是通过调用分词器的decode()函数完成的。我们还指定了skip_special_tokens=True来跳过特殊标记(如[PAD]、[UNK]
    处理结果:

    一、引言

    transformers库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,transformers库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过pipeline()函数方便地加载和使用,而generate()函数则是用于生成文本的核心函数。

    二、pipeline()函数的使用

    pipeline()函数是transformers库中一个非常重要的函数,它允许用户通过简单的API调用加载和使用预训练的模型。对于文本生成任务,我们可以使用text-generation类型的pipeline。

    示例代码

    ```python

    加载预训练的文本生成模型

    使用模型生成文本

    print(output[0]['generated_text'])
  6. 导入必要的库:首先,我们导入了transformers库中的pipeline函数。
    加载预训练的文本生成模型:通过调用pipeline()函数并传入"text-generation"作为参数,我们告诉库我们想要加载一个文本生成模型。然后,我们指定了模型的名称"gpt2-medium",这是Hugging Face Model Hub上的一个预训练模型。库会自动下载并加载这个模型。
    使用模型生成文本:加载完模型后,我们可以使用它来生成文本。我们传入一个提示(prompt)作为输入,然后指定一些参数来控制生成的文本。在这个例子中,我们指定了max_length=50来限制生成的文本长度,以及num_return_sequences=1来指定只返回一条生成的文本。最后,我们打印出生成的文本。

    三、generate()函数的使用

    虽然pipeline()函数提供了方便的API来加载和使用模型,但在某些情况下,我们可能想要更直接地控制模型的生成过程。这时,我们可以使用模型的generate()函数。

    示例代码

    ```python

    加载预训练的模型和分词器

    准备输入

    使用模型生成文本

    将生成的ID转换为文本

    print(generated_text)
  7. 导入必要的库和模型:首先,我们导入了GPT2LMHeadModelGPT2Tokenizer类,以及PyTorch库。这些类分别用于加载GPT-2模型和对应的分词器。
    加载预训练的模型和分词器:我们使用from_pretrained()函数加载了预训练的GPT-2模型和分词器。这些资源会自动从Hugging Face Model Hub下载。
    准备输入:我们将提示(prompt)文本编码为模型可以理解的输入ID。这是通过调用分词器的encode()函数完成的。我们还指定了return_tensors="pt"来返回PyTorch张量。
    使用模型生成文本:然后,我们调用模型的generate()函数来生成文本。这个函数接受输入ID作为输入,并返回生成的文本ID。我们指定了一些参数来控制生成的文本,如max_lengthnum_beams(用于beam search的beam数量)、no_repeat_ngram_size(用于避免重复n-gram的n值)和early_stopping(是否提前停止生成)。
    将生成的ID转换为文本:最后,我们将生成的ID解码为文本。这是通过调用分词器的decode()函数完成的。我们还指定了skip_special_tokens=True来跳过特殊标记(如[PAD]、[UNK]
相关文章
|
1月前
|
人工智能 搜索推荐 API
用于企业AI搜索的Bocha Web Search API,给LLM提供联网搜索能力和长文本上下文
博查Web Search API是由博查提供的企业级互联网网页搜索API接口,允许开发者通过编程访问博查搜索引擎的搜索结果和相关信息,实现在应用程序或网站中集成搜索功能。该API支持近亿级网页内容搜索,适用于各类AI应用、RAG应用和AI Agent智能体的开发,解决数据安全、价格高昂和内容合规等问题。通过注册博查开发者账户、获取API KEY并调用API,开发者可以轻松集成搜索功能。
|
1月前
|
存储 开发框架 .NET
.NET 8 实现无实体库表 API 部署服务
【10月更文挑战第12天】在.NET 8中,可通过以下步骤实现无实体库表的API部署:首先安装.NET 8 SDK及开发工具,并选用轻量级Web API框架如ASP.NET Core;接着创建新项目并设计API,利用内存数据结构模拟数据存储;最后配置项目设置并进行测试与部署。此方法适用于小型项目或临时解决方案,但对于大规模应用仍需考虑持久化存储以确保数据可靠性与可扩展性。
|
1月前
|
人工智能 自然语言处理 PyTorch
Text2Video Huggingface Pipeline 文生视频接口和文生视频论文API
文生视频是AI领域热点,很多文生视频的大模型都是基于 Huggingface的 diffusers的text to video的pipeline来开发。国内外也有非常多的优秀产品如Runway AI、Pika AI 、可灵King AI、通义千问、智谱的文生视频模型等等。为了方便调用,这篇博客也尝试了使用 PyPI的text2video的python库的Wrapper类进行调用,下面会给大家介绍一下Huggingface Text to Video Pipeline的调用方式以及使用通用的text2video的python库调用方式。
|
2月前
|
API Python
4. salt-api请求salt-minion执行任务 tornado超时报错
4. salt-api请求salt-minion执行任务 tornado超时报错
|
2月前
|
JSON 资源调度 JavaScript
Vue框架中Ajax请求的实现方式:使用axios库或fetch API
选择 `axios`还是 `fetch`取决于项目需求和个人偏好。`axios`提供了更丰富的API和更灵活的错误处理方式,适用于需要复杂请求配置的场景。而 `fetch`作为现代浏览器的原生API,使用起来更为简洁,但在旧浏览器兼容性和某些高级特性上可能略显不足。无论选择哪种方式,它们都能有效地在Vue应用中实现Ajax请求的功能。
41 4
|
2月前
|
测试技术 API
8-20|https://gitlab.xx.com/api/v4/projects/4/trigger/pipeline Request failed 状态码400
8-20|https://gitlab.xx.com/api/v4/projects/4/trigger/pipeline Request failed 状态码400
|
3月前
|
机器学习/深度学习 自然语言处理 PyTorch
PyTorch与Hugging Face Transformers:快速构建先进的NLP模型
【8月更文第27天】随着自然语言处理(NLP)技术的快速发展,深度学习模型已经成为了构建高质量NLP应用程序的关键。PyTorch 作为一种强大的深度学习框架,提供了灵活的 API 和高效的性能,非常适合于构建复杂的 NLP 模型。Hugging Face Transformers 库则是目前最流行的预训练模型库之一,它为 PyTorch 提供了大量的预训练模型和工具,极大地简化了模型训练和部署的过程。
167 2
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【开源项目】自然语言处理领域的明星项目推荐:Hugging Face Transformers
在当今人工智能与大数据飞速发展的时代,自然语言处理(NLP)已成为推动科技进步的重要力量。而在NLP领域,Hugging Face Transformers无疑是一个备受瞩目的开源项目。本文将从项目介绍、代码解释以及技术特点等角度,为您深入剖析这一热门项目。
72 10
|
3月前
|
API 数据库 索引
indexedDB 操作库IDBWRAPPER 教程翻译及API翻译第二部分part2
indexedDB 操作库IDBWRAPPER 教程翻译及API翻译第二部分part2
|
3月前
|
JSON API 网络架构
【Azure Developer】Azure REST API: 如何通过 API查看 Recovery Services Vaults(恢复保管库)的备份策略信息? 如备份中是否含有虚拟机的Disk
【Azure Developer】Azure REST API: 如何通过 API查看 Recovery Services Vaults(恢复保管库)的备份策略信息? 如备份中是否含有虚拟机的Disk