`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。

本文涉及的产品
云原生网关 MSE Higress,422元/月
MSE Nacos 企业版免费试用,1600元额度,限量50份
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: `transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。

一、引言

transformers库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,transformers库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过pipeline()函数方便地加载和使用,而generate()函数则是用于生成文本的核心函数。

二、pipeline()函数的使用

pipeline()函数是transformers库中一个非常重要的函数,它允许用户通过简单的API调用加载和使用预训练的模型。对于文本生成任务,我们可以使用text-generation类型的pipeline。

示例代码

from transformers import pipeline

# 加载预训练的文本生成模型
generator = pipeline("text-generation", model="gpt2-medium")

# 使用模型生成文本
prompt = "In a world where machines can think, "
output = generator(prompt, max_length=50, num_return_sequences=1)

print(output[0]['generated_text'])

代码解释

  1. 导入必要的库:首先,我们导入了transformers库中的pipeline函数。
  2. 加载预训练的文本生成模型:通过调用pipeline()函数并传入"text-generation"作为参数,我们告诉库我们想要加载一个文本生成模型。然后,我们指定了模型的名称"gpt2-medium",这是Hugging Face Model Hub上的一个预训练模型。库会自动下载并加载这个模型。
  3. 使用模型生成文本:加载完模型后,我们可以使用它来生成文本。我们传入一个提示(prompt)作为输入,然后指定一些参数来控制生成的文本。在这个例子中,我们指定了max_length=50来限制生成的文本长度,以及num_return_sequences=1来指定只返回一条生成的文本。最后,我们打印出生成的文本。

三、generate()函数的使用

虽然pipeline()函数提供了方便的API来加载和使用模型,但在某些情况下,我们可能想要更直接地控制模型的生成过程。这时,我们可以使用模型的generate()函数。

示例代码

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

# 加载预训练的模型和分词器
model = GPT2LMHeadModel.from_pretrained("gpt2-medium")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium")

# 准备输入
prompt = "In a world where machines can think, "
input_ids = tokenizer.encode(prompt, return_tensors="pt")

# 使用模型生成文本
output = model.generate(input_ids, max_length=50, num_beams=1, no_repeat_ngram_size=2, early_stopping=True)

# 将生成的ID转换为文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print(generated_text)

代码解释

  1. 导入必要的库和模型:首先,我们导入了GPT2LMHeadModelGPT2Tokenizer类,以及PyTorch库。这些类分别用于加载GPT-2模型和对应的分词器。
  2. 加载预训练的模型和分词器:我们使用from_pretrained()函数加载了预训练的GPT-2模型和分词器。这些资源会自动从Hugging Face Model Hub下载。
  3. 准备输入:我们将提示(prompt)文本编码为模型可以理解的输入ID。这是通过调用分词器的encode()函数完成的。我们还指定了return_tensors="pt"来返回PyTorch张量。
  4. 使用模型生成文本:然后,我们调用模型的generate()函数来生成文本。这个函数接受输入ID作为输入,并返回生成的文本ID。我们指定了一些参数来控制生成的文本,如max_lengthnum_beams(用于beam search的beam数量)、no_repeat_ngram_size(用于避免重复n-gram的n值)和early_stopping(是否提前停止生成)。
  5. 将生成的ID转换为文本:最后,我们将生成的ID解码为文本。这是通过调用分词器的decode()函数完成的。我们还指定了skip_special_tokens=True来跳过特殊标记(如[PAD]、[UNK]
    处理结果:

    一、引言

    transformers库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,transformers库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过pipeline()函数方便地加载和使用,而generate()函数则是用于生成文本的核心函数。

    二、pipeline()函数的使用

    pipeline()函数是transformers库中一个非常重要的函数,它允许用户通过简单的API调用加载和使用预训练的模型。对于文本生成任务,我们可以使用text-generation类型的pipeline。

    示例代码

    ```python

    加载预训练的文本生成模型

    使用模型生成文本

    print(output[0]['generated_text'])
  6. 导入必要的库:首先,我们导入了transformers库中的pipeline函数。
    加载预训练的文本生成模型:通过调用pipeline()函数并传入"text-generation"作为参数,我们告诉库我们想要加载一个文本生成模型。然后,我们指定了模型的名称"gpt2-medium",这是Hugging Face Model Hub上的一个预训练模型。库会自动下载并加载这个模型。
    使用模型生成文本:加载完模型后,我们可以使用它来生成文本。我们传入一个提示(prompt)作为输入,然后指定一些参数来控制生成的文本。在这个例子中,我们指定了max_length=50来限制生成的文本长度,以及num_return_sequences=1来指定只返回一条生成的文本。最后,我们打印出生成的文本。

    三、generate()函数的使用

    虽然pipeline()函数提供了方便的API来加载和使用模型,但在某些情况下,我们可能想要更直接地控制模型的生成过程。这时,我们可以使用模型的generate()函数。

    示例代码

    ```python

    加载预训练的模型和分词器

    准备输入

    使用模型生成文本

    将生成的ID转换为文本

    print(generated_text)
  7. 导入必要的库和模型:首先,我们导入了GPT2LMHeadModelGPT2Tokenizer类,以及PyTorch库。这些类分别用于加载GPT-2模型和对应的分词器。
    加载预训练的模型和分词器:我们使用from_pretrained()函数加载了预训练的GPT-2模型和分词器。这些资源会自动从Hugging Face Model Hub下载。
    准备输入:我们将提示(prompt)文本编码为模型可以理解的输入ID。这是通过调用分词器的encode()函数完成的。我们还指定了return_tensors="pt"来返回PyTorch张量。
    使用模型生成文本:然后,我们调用模型的generate()函数来生成文本。这个函数接受输入ID作为输入,并返回生成的文本ID。我们指定了一些参数来控制生成的文本,如max_lengthnum_beams(用于beam search的beam数量)、no_repeat_ngram_size(用于避免重复n-gram的n值)和early_stopping(是否提前停止生成)。
    将生成的ID转换为文本:最后,我们将生成的ID解码为文本。这是通过调用分词器的decode()函数完成的。我们还指定了skip_special_tokens=True来跳过特殊标记(如[PAD]、[UNK]
相关文章
|
3月前
|
自动驾驶 程序员 API
告别重复繁琐!Apipost参数描述库让API开发效率飙升!
在API开发中,重复录入参数占用了42%的时间,不仅效率低下还易出错。Apipost推出的参数描述库解决了这一痛点,通过智能记忆功能实现参数自动填充,如版本号、分页控制、用户信息等常用字段,大幅减少手动输入。支持Key-Value与Raw-Json格式导入,一键提取响应结果至文档,将创建20参数接口文档时间从18分钟缩短至2分钟。相比Postman需手动搜索变量,Apipost的参数复用响应速度仅0.3秒,且支持跨项目共享与实时纠错,真正实现“一次定义,终身受益”。
|
5月前
|
监控 API 计算机视觉
CompreFace:Star6.1k,Github上火爆的轻量化且强大的人脸识别库,api,sdk都支持
CompreFace 是一个在 GitHub 上拥有 6.1k Star 的轻量级人脸识别库,支持 API 和 SDK。它由 Exadel 公司开发,基于深度学习技术,提供高效、灵活的人脸识别解决方案。CompreFace 支持多种模型(如 VGG-Face、OpenFace 和 Facenet),具备多硬件支持、丰富的功能服务(如人脸检测、年龄性别识别等)和便捷的部署方式。适用于安防监控、商业领域和医疗美容等多个场景。
403 4
|
2月前
|
人工智能 API 开发者
狂揽7.5k星!这款开源API网关彻底解放开发者:一键聚合GPT-4、Suno、Midjourney,还能在线充值!
New API 是一款基于 One API 二次开发的 AI 模型接口管理与分发系统,支持多种大模型(如 GPT-4、Suno、Midjourney 等)统一封装为 OpenAI 格式接口调用。其核心功能包括多模型统一网关、企业级权限管控、“推理力度”分级、无魔法访问全球 AI 服务、灵活计费体系及开发者友好设计。技术架构采用 Golang + Gin 框架,支持高并发低延迟,适用于企业内部 AI 中台、多模型 SaaS 平台、学术研究协作及个人开发者工具等场景。项目开源地址:https://github.com/kingbug/new-api。
373 6
|
7月前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
1501 65
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
5月前
|
人工智能 自然语言处理 数据可视化
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
Data Formulator 是微软研究院推出的开源 AI 数据可视化工具,结合图形化界面和自然语言输入,帮助用户快速创建复杂的可视化图表。
578 10
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
|
6月前
|
人工智能 自然语言处理 API
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
UI-TARS Desktop 是一款基于视觉语言模型的 GUI 代理应用,支持通过自然语言控制电脑操作,提供跨平台支持、实时反馈和精准的鼠标键盘控制。
2225 17
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
|
5月前
|
文字识别 自然语言处理 API
如何结合NLP(自然语言处理)技术提升OCR系统的语义理解和上下文感知能力?
通过结合NLP技术,提升OCR系统的语义理解和上下文感知能力。方法包括集成NLP模块、文本预处理、语义特征提取、上下文推理及引入领域知识库。代码示例展示了如何使用Tesseract进行OCR识别,并通过BERT模型进行语义理解和纠错,最终提高文本识别的准确性。相关API如医疗电子发票验真、车险保单识别等可进一步增强应用效果。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(Natural Language Processing,简称NLP)
自然语言处理(NLP)是人工智能的分支,旨在让计算机理解、解释和生成人类语言。NLP的关键技术和应用包括语言模型、词嵌入、文本分类、命名实体识别、机器翻译、文本摘要、问答系统、情感分析、对话系统、文本生成和知识图谱等。随着深度学习的发展,NLP的应用日益广泛且效果不断提升。
431 4
|
8月前
|
API
表情包-API盒子官方资源库版免费API接口教程
该API用于访问API盒子官方资源库中的数十万表情包,支持快速搜索。通过POST或GET请求,用户可按随机或关键词搜索表情包,返回表情包的图片地址等信息。请求需提供用户ID、KEY及搜索类型等参数。示例与详情参见官方文档。
|
8月前
|
机器人 API
随机昵称网名[百万昵称库]免费API接口教程
该API接口用于随机生成网名,适用于机器人昵称、虚拟用户名等场景。支持POST和GET请求,需提供用户ID和KEY。返回状态码及信息提示,示例如下:{"code":200,"msg":"豌豆公主"}。详情见官方文档:https://www.apihz.cn/api/zicisjwm.html