【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)

简介: 【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)

【吴恩达深度学习笔记-改善深层神经网络】——第一周深度学习的实用层面(1.1)

1.1训练/开发/测试集

如果想要构建一个高效的神经网络,那么配置训练、验证、测试集就要好好斟酌了。

在创建神经网络时,要做一些决策,包括网络有几层,每层有几个隐藏单元,学习率,各层用到的激活函数等。

但在实际应用中,我们不可能一开始就能够准确的预测出这些超参数的值,因而,可以说,应用型机器学习是一个高度迭代的过程。

1ecd1b2606ed46e9956a89f231c9802c.png

如果想要构建一个高效的神经网络,那么配置训练、验证、测试集就要好好斟酌了。

在创建神经网络时,要做一些决策,包括网络有几层,每层有几个隐藏单元,学习率,各层用到的激活函数等。

但在实际应用中,我们不可能一开始就能够准确的预测出这些超参数的值,因而,可以说,应用型机器学习是一个高度迭代的过程。

1ecd1b2606ed46e9956a89f231c9802c.png

把数据(样本)划分成训练集、验证集(交叉验证)和测试集,采用不同的算法对训练数据进行训练,然后通过验证集来选择出最好的算法,最后用测试集对该算法进行评估。

其中,对于数据规模较小的数据集来说,可以使用传统划分,即60%、20%、20%;而对于数据规模较大的数据集来说,训练数据占得比重较高,而验证集测试集比重小,因为验证的作用只是验证不同算法并选择出最好的,测试集是评估分类器的性能,它们各自所占比重足以进行评估。

紧接着,在实际应用中会遇到训练集和测试集不在同一个分布的问题,例如训练数据图片是高质量高像素的,而用户上传的数据图片是模糊不清晰的:

1ecd1b2606ed46e9956a89f231c9802c.png

解决这个问题的办法就是确保验证集和测试集在同一分布就可以了。

如果不想得到无偏差评估算法性能(测试集做的事),实际上也可以省略测试集,即验证集拟合到了测试集,直接通过验证集迭代出最优的训练算法。

总结:搭建训练、验证、测试集可以加速神经网络的集成,也可以有效衡量算法的偏差和方差,从而更高效的选择合适的方法来优化算法。

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
168 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
79 3
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
82 8
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
72 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
129 5
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
107 16
|
23天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
82 19

热门文章

最新文章

下一篇
开通oss服务