分布式系统架构(一)——Master-Workers 架构

简介: 分布式系统架构(一)——Master-Workers 架构

分布式系统有很多经典的套路,也即设计模式。每个设计模式可以解决经典的一类问题,积累的多了,便可以稍加变化,进行取舍,设计出贴合需求的架构组织。但似乎大家在这方面经验分享的不太多,因此之后打算总结一些工作和学习的经验,既是备忘,也希望对大家有些助益。篇幅所限、能力所囿,难以面面俱到,又或疏于精确。不当之处,欢迎指正。

每篇将以概述背景、架构模块、总结延伸来分别解析,本篇是第一篇:Master-Workers 架构。

概述

Master-Workers 架构(粗译为主从架构)是分布式系统中常见的一种组织方式,如 GFS 中的 Master、ChunkServers;MapReduce 中的 Master、Workers。面对分布式系统中一堆分离的机器资源,主从架构是一种最自然、直白的组织方式——就像一群人,有个说了算 leader 进行组织、协调,才能最大化这群人的对外输出能力。

这也是计算机系统中常见的一种分而治之思想的体现。即将一个复杂的系统,拆解成几个相对高内聚、低耦合的子模块,定义清楚其功能边界交互接口,使得系统易于理解、维护和扩展。对于主从架构来说,主(Master) 通常会维护集群元信息、进而依靠这些元信息进行调度,从(Workers) 通常负责具体数据切片(存储系统)的读写或者作为子任务(计算系统)的执行单元。

架构模块

主从架构系统,通常由单个 Master ,多个 Worker 组成。插一句,这里英文翻译没有用 Slave 的原因是,我觉得 Worker 更中性一些。当然,单个 Master 会有性能瓶颈和可用性问题,通常也有多种解决方案,后面详说。但单个 Master 的好处是显而易见的:Master 作为一个控制节点,而不用处理由多副本带来的一致性问题,大大降低实现难度。

以我更熟悉一点的存储系统架构为例,其架构图通常长这样。

image.png

                            master-workers architecture

除了系统内部的 Master 和 Worker 外,还有使用系统的外部用户。我们通常称之为**客户端(Client),**Client 通过系统暴露的接口(如 RPC、HTTP)与系统进行交互。

Master

Master 通常会存储系统的元信息,什么是元信息呢?可以理解为集群组织信息在 Master 脑中的一个倒影,或者说视图(View):比如集群有多少 Worker、每个 Worker 有多少剩余容量、负载如何、哪些 Worker 存储了哪些数据等等。

那元信息是怎么收集的呢?主要分两种情况:

  1. 配置。可以理解为集群静态信息,比如系统初始有多少个 Worker、Worker 的物理拓扑、每个 Worker 的容量等等,Master 会在启动时加载这些配置信息。
  2. 汇报。主要是集群动态信息,Worker 在运行时,主动将自身状态汇报给 Master,比如 Worker 是否存活、Worker 负载信息、Worker 存了哪些数据等等。在系统运行中,Worker 会定时地通过心跳(Heartbeat) 等方式,持续给 Master 汇报。

有了这些元信息,Master 就可以对整个集群情况有个掌握,从而做出一系列的决策,试举几例:

  1. 调度(Schedule)。一个新的写数据请求来了,要分配给哪个 Worker 负责?通常会选择一个负载小的。
  2. 均衡(Balance)。随着 Worker 变动、数据增删,数据在不同机器中分布可能不再均匀,在某些机器形成读写热点、在另一些机器却存在资源浪费,从而影响系统整体性能。因此需要实时监测,适时迁移。
  3. 路由(Locate/Route)。一个读写请求来了,不知道去找哪个 Worker?Master 便会查询元信息,给出对应数据的 Worker 信息。

Master 的可用性

可以看出整个系统的可用性全系 Master 一身。业界也有很多解决办法,比如:

  1. 使用主备。即给 Master 做个分身,备 Master 所有元信息要时刻跟主 Master 保持一致,一旦主 Master 挂掉,分身立刻跟上。Hadoop 后来这么干过。
  2. 使用共识算法(consensus algorithm)。简单来说,就是由一堆 Master 机器来组成委员会,每个状态变更都要通过某种算法达成共识。Google 的 Spanner 就是这么干的。
  3. 无主。系统中不再有 Master,人人平等,然后通过某种策略,比如说一致性哈希(consistent hash),来分活干。Amazon 的 Dynamo 是这么干的。

每种策略都是比较大的主题,以后可以分别单开一篇,本文限于篇幅不再展开。

Workers

在存储系统中,Workers 会存储实际数据,并对外提供数据 IO 服务。

从单机视角来看,Worker 需要设计一个贴合业务需求的单机引擎,高效的存储数据。单机引擎设计也是一个很大的话题,这里简要提一嘴:

  1. 索引设计:比如 B+ 树、LSM-tree、哈希索引等等。
  2. 底层系统:是用裸盘还是文件系统。
  3. 存储介质:使用可持久化内存、固态硬盘还是机械硬盘。

从多机视角来看,机器的数量一上去,系统中单台机器出现故障的概率便大大提高。为了应对这种常态化的故障,需要:

  1. 运维的自动化。机器不可用后要自动剔除,修好后要便捷上线。
  2. 数据的冗余化。机器故障后数据不能丢,因此每份数据要多副本存放、使用 EC 算法做冗余。

小结

Master-Workers 架构是分布式系统中最常用的一种组织方式。该架构类似于人类社群的组织方式,将系统的职责进行拆解,Master 收集元信息,并据此进行任务调度;Workers 负责实际工作负载,需要设计高效的单机引擎,并配合全局做冗余。该架构简单直接,但威力强大。

相关文章
|
20天前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
77 41
|
4月前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
4月前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
1天前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
31 8
|
4天前
|
存储 缓存 安全
分布式系统架构7:本地缓存
这是小卷关于分布式系统架构学习的第10篇文章,主要介绍本地缓存的基础理论。文章分析了引入缓存的利弊,解释了缓存对CPU和I/O压力的缓解作用,并讨论了缓存的吞吐量、命中率、淘汰策略等属性。同时,对比了几种常见的本地缓存工具(如ConcurrentHashMap、Ehcache、Guava Cache和Caffeine),详细介绍了它们的访问控制、淘汰策略及扩展功能。
25 6
|
7天前
|
存储 关系型数据库 分布式数据库
[PolarDB实操课] 01.PolarDB分布式版架构介绍
《PolarDB实操课》之“PolarDB分布式版架构介绍”由阿里云架构师王江颖主讲。课程涵盖PolarDB-X的分布式架构、典型业务场景(如实时交易、海量数据存储等)、分布式焦点问题(如业务连续性、一致性保障等)及技术架构详解。PolarDB-X基于Share-Nothing架构,支持HTAP能力,具备高可用性和容错性,适用于多种分布式改造和迁移场景。课程链接:[https://developer.aliyun.com/live/253957](https://developer.aliyun.com/live/253957)。更多内容可访问阿里云培训中心。
[PolarDB实操课] 01.PolarDB分布式版架构介绍
|
4月前
|
存储 JSON 数据库
Elasticsearch 分布式架构解析
【9月更文第2天】Elasticsearch 是一个分布式的搜索和分析引擎,以其高可扩展性和实时性著称。它基于 Lucene 开发,但提供了更高级别的抽象,使得开发者能够轻松地构建复杂的搜索应用。本文将深入探讨 Elasticsearch 的分布式存储和检索机制,解释其背后的原理及其优势。
358 5
|
30天前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
78 11
|
1月前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
53 11
|
1月前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
67 11

热门文章

最新文章